
n A owes B amount u ——— d1
o B owes C amount v ——— d2
p u ≥ v ——— d3
q A should-pay C amount v (split1 n o p) d1 ∪ d2 ∪ d3
r A should-pay B amount (u− v) (split2 n o p) d1 ∪ d2 ∪ d3

Figure 1: A rule for settling debts

Controlling the process of reasoning and deduction in practice depends on
careful management of the “sources” of belief (the “premises” of logical state-
ments in the systems) as well as constraining active reasoning to only apply
to those statements and rules likely to be relevant to achieve a desired conclu-
sion. These two goals are deeply interlinked by the very essence of reasoning;
many rules only become “relevant” in the presence of sufficient statements (or
needs) supported by believed premises, while the contradictions encountered in
the process of reasoning may provide sufficient evidence to reconsider belief in
premises.

This circular dependency may create problems if the “relevance” of a rule
is not separated from the data dependencies of a particular derived statement
(i.e. one which was not directly supported by a premise). The allocation of
work in a process of reasoning does not mean that the derived statements have
a dependency on the allocation itself. Assuming that the statements supported
by a particular premise are invariant, the truth of a derived statement that
depends on these base statements is itself invariant; it is either true or it is
false, independent of the time or mechanism of its derivation.

How can we properly represent and connect the data dependencies of logical
operations carried out in a program separate from the process of allocating effort
in their evaluation? Here, we can make use of the formalism proposed by Suppes
in [?]. Suppes’s formalism of logic treats the process of logical deduction as
separate from the maintenance of the statements/premises on which the deduced
statement depends, but relates the two in such a way that we may describe the
process of maintaining dependencies in terms of the deductive operations applied
on logical statements.

Take, for example, the case where three people, Alyssa, Ben, and Chris, split
a check for lunch. Should Chris owe Ben for a previous meal, and Ben similarly
owe Alyssa, they might decide to settle their debts at the time they pay the
bill using a rule like that in Figure 1. In these rules (split1 and split2), the
amount Chris should pay Ben and Alyssa depends not only on why he owes Ben
(dependency d1) and why Ben owes Alyssa the amount he does (dependency d2)
but also their relative amounts (dependency d3), so that the statements about
Chris’s debts depend on their union (d1 ∪ d2 ∪ d3).

Although it is true that Chris should pay Ben and Alyssa appropriately,
the practical application of this particular rule is contextual. Even though it’s
quite useful to calculate how much Chris should pay Ben and Alyssa if they are
splitting the check at a restaurant, it’s not as useful to apply the same rule if

1



m A,B,C in restaurant ——— d0
n A owes B amount u ——— d1
o B owes C amount v ——— d2
p u ≥ v ——— d3
q A should-pay C amount v (split1 m n o p) d1 ∪ d2 ∪ d3
r A should-pay B amount (u− v) (split2 m n o p) d1 ∪ d2 ∪ d3

Figure 2: A rule for settling debts, only considered in a restaurant

the three are celebrating a birthday party for Chris (After all, it would be rude
to ask Chris to pay a debt during his own party!) It is possible to represent this
using a variant rule like that displayed in Figure 2.

Obviously, if any of the dependencies d1, d2 or d3 in Figure 1 is no longer
believed to be true (perhaps Chris is able to argue that he already paid Ben, in
which case d1 is no longer true), then their conclusion is also necessarily false
and Chris would no longer owe either Ben or Alyssa regardless of which rule
we apply. But once it has been shown that Chris should pay Ben and Alyssa,
that fact remains true even if the three leave the restaurant (i.e. there is no
dependency on d0 in Figure 2)! In order to properly trace computation, however,
it is still important to note how we were able to get to the answer. Thus, the
informants (i.e. the rule split1 or split2 and the statements which caused the
investigation of it, m, n, o and p) is still associated with the conclusions q and
r.

Consider another scenario, in which a prosecutor seeks to charge a “deadbeat
dad”, Joe, for failing to support his child (as his mail has been bouncing and
his location is currently unknown). According to the federal deadbeat dad
law (Figure ??), the guilt of such a “deadbeat dad” is completely independent
of the way in which the prosecutor is motivated to discover that the father
has broken the law.1 It is useful to separate propositions which motivate an
investigation into a deadbeat dad (the fact that Joe’s location was unknown)
from the evidence which supports Joe’s guilt.

This particular scenario demonstrates a necessary component of any such
system which separates rules which provide motivation from those which pro-
vide conclusions: the “unknownness” of a proposition. Here, the prosecutor’s
motivation is dependent on the “unknownness” of the proposition “Joe is in
the same state as his child”. The fact that this proposition is neither known to
be true nor known to be false is what motivates the actions of the prosecutor.
Should the proposition be known to be true, then the prosecutor has no reason
to seek prosecution (as it does not violate the federal law), while if the proposi-
tion is known to be false, then there is no reason for the prosecutor to expend
effort in establishing Joe’s location.

1This point ignores issues of process which may appear at first to contradict this claim.
But, while the evidence presented by a prosecutor to establish guilt must be procured in
accordance with the Fourth Amendment, it is generally not the case that the investigation
itself be motivated by such process.

2



Propositions are simply statements which have an associated truth value.
A truth value may have one of five values in our system, rather than the two
values of traditional Boolean logic. In this regard, it is more closely related to
four-valued logics such as that described by .[] To the four values true, false,
overdefined (contradictory) and underdefined (unknown), we add a second, nu-
anced version of the underdefined value representing whether a value has been
or can be determined. This second value is thus, effectively, 6 unknown(p). Al-
though this “definition by opposition” may have little value when “true”, “false”
and “overdefined” are more descriptive, the existence of this fifth state is useful
in use cases which depend on effective allocation of resources for problem solv-
ing, especially when used with facts about knowledge held by other actors. If the
truth of a fact is “known” by another system (perhaps one of the prosecutor’s
co-workers can determine Joe’s last known address), it may not be necessary
for the system to derive the fact from first principles. Instead, a system may be
able to defer evaluation of a statement or “shortcut” this derivation (such as by
asking a co-worker for the last known address when it is actually needed).

In order to provide accountability and traceability of logical deductions,
propositions make use of truth maintenance systems which provide for the man-
agement of incompatible premises in support of a true or false value. In order to
properly represent the five values of a proposition’s truth, however, the proposi-
tion itself is “reified” into five distinct statements, “p is true”, “p is false”, “p is
contradictory”, “p is known”, and “p is unknown”. These individual statements
then have their own truth stored in separate truth maintenance systems.

Rule-based reasoning may be constructed on top of these truth maintenance
systems by connecting them through what is called a “propagator network.” In
a propagator network, partial information may “propagate” through a network,
causing computation to occur as the partial information is gradually refined or
revised. In this way, we may conceive of a reasoner as a propagator network
which propagates constraints in a logically consistent manner. For example, a
rule which states “p is true AND q is false → r is true” may be constructed
through the use of a propagator which connects the “true” state of proposition
p and the “false” state of proposition q to the true state of proposition r, taking
the conjunction of the truth values of the former two states.

Consider an insurance company which seeks to charge rates dependent on the
risk factor related to unhealthy eating (e.g. eating hot dogs). Assuming that
the company has access to personal information (such as accessing Facebook
pages of those individuals seeking to be covered under its policy), how might it
use this data to support a decision on the rates that it charges an individual
under its policies? Conversely, how can an individual react to these decisions
and (perhaps) restrict the visibility of public information so as to evaluate the
reasons why certain public information should be private?

An insurance company seeking proof that an individual eats unhealthy food
may find proof through a number of ways (Table 1), each of which may be
implemented as a separate rule in this system. Each of these rules may be
transformed into a system of propositions and the propagators for implication
and other logical operations which connect them.

3



likes(u, food)→ eats(u, food)
cooks(u, food)→ eats(u, food)
likes(u, restaurant) ∧ serves(restaurant , food)→ eats(u, food)
employed at(u, restaurant) ∧ serves(restaurant , food)→ eats(u, food)

Table 1: Different rules from which the fact that u eats a particular type of food
may be derived

These rule-propagators connect the truth-states of specific, concrete proposi-
tions. As a result, a mechanism is needed to construct appropriate propagators
to connect newly established propositions. This is done by storing references
to propositions in a separate database which may be indexed for easy pattern
matching of propositions.

In our implementation, the database is implemented crudely as a linked list
which is iterated over when pattern matching is requested. As this obviously
requires a linear scan over the database whenever a rule is made active, this is not
a particularly scalable approach to reasoning. However, application of existing
approaches to database indexing may be equally useful and significantly more
efficient than the crude implementation used here.

But what about matching against existing rules when a new proposition is
added? We may turn our pattern matching into a “trigger” on the database
so that pattern matching of the body of any rule (in order to determine when
a rule’s propagators should be created) is done whenever a new proposition is
added to the database.

In our system, this is done by considering the database of propositions to
be a partial information structure stored in a cell of its own, so that a propaga-
tor which searches for new rules executes whenever the database updates (i.e.
whenever a proposition is created). This propagator then scans the database and
marks any propositions it finds that match the rule’s pattern and constructs the
appropriate propagator network. As this approach results in the performance
of one linear scan of the database for each pattern for each proposition added,
this mechanism is understandably inefficient. A better implementation would
instead match only against the partial content added to the database (so as to
only effectively scan each proposition once.

The syntactic sugar (rule ((var antecedent )...) consequent...) sets
up a rule by constructing a pattern-match against a particular specification of a
proposition and binding a particular truth value-cell to the variable var. For ex-
ample, the antecedent (accepted (a-prop ’(?subject eats unhealthy-food)))

performs a pattern-match to find propositions which match the pattern (subject

eats unhealthy-food), where the variable subject is denoted by prefixing a
question-mark. The accepted cell of any such proposition is then obtained and
returned to be bound to the variable, as in a standard Lisp let-form.

These pattern-matchers are chained in the order of the variables (so that
the first antecedent must be matched before any subsequent antecedent may be
matched), and result in variables bound in earlier antecedents to be used as the

4



values of variables bound in later antecedents. Since no ordering is placed on the
antecedents in a rule, this may cause inefficient pattern-matching; an excessive
number of antecedents may be attached to the database as triggers if a partic-
ularly “loose” constraint is used as the first antecedent (since it may match a
large number of propositions which may not be relevant to the final conclusion).
Techniques of query optimization may thus help in order to place stronger con-
straints before looser ones in the antecedent order without impacting the final
results.

Once the final antecedent has been matched, the appropriate consequents
will cause conditional propagator connections to be made (so that any premises
that are necessary but no longer believed will appropriately “deactivate” the
rule and, if so described, its consequents).

The consequent of a rule is executed as the body of a lambda function exactly
once for each distinct combination of variable bindings of the unbound variables
in the antecedent. Executing such as a lambda function allows for additional
evaluation of bound values that are not easily captured in concrete statements
stored in our dictionary. For example, the u ≥ v requirement in Figure 1 is best
resolved in this way (there exist an infinite number of true statements of this
form, the reasons for which are fundamentally irrelevant for the task of splitting
a bar tab.)

5


