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Abstract

While humans may solve problems by applying any one of a number of di↵erent prob-
lem solving strategies, computerized problem solving is typically brittle, limited in the
number of available strategies and ways of combining them to solve a problem. In this
thesis, I present a method to flexibly select and combine problem solving strategies by
using a constraint-propagation network, informed by higher-order knowledge about
goals and what is known, to selectively control the activity of underlying problem
solvers. Knowledge within each problem solver as well as the constraint-propagation
network are represented as a network of explicit propositions, each described with
respect to five interrelated axes of concrete and abstract knowledge about each propo-
sition. Knowledge within each axis is supported by a set of dependencies that allow
for both the adjustment of belief based on modifying supports for solutions and the
production of justifications of that belief. I show that this method may be used to
solve a variety of real-world problems and provide meaningful justifications for so-
lutions to these problems, including decision-making based on numerical evaluation
of risk and the evaluation of whether or not a document may be legally sent to a
recipient in accordance with a policy controlling its dissemination.
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Chapter 1

Introduction

What makes human intelligence di↵erent from that of other animals? Although a

number of di↵erent theories and di↵erentiators have been presented in the past, in-

cluding tool use [13], self-recognition [6], and social intelligence [5], one of the leading

theories at present is the human ability to solve problems in a abstract, “symbolic”

manner [17]. Indeed, humans appear to be able to use their symbolic problem solving

skills in any number of di↵erent ways, including applying logic to statistical scientific

analysis based on the scientific method, as well as the application of the probabilistic

approaches to learning that have formed the foundation of many modern algorithms

considered to fall under the guise of “artificial intelligence” [15].

While the increased understanding of each of these various problem solving mech-

anisms has led to a greater understanding and appreciation of the role of symbolic

manipulation in human intelligence, less has been done to properly understand and

harness the mechanisms for control that allow humans to make use of any of these

various approaches in a flexible manner, outside of the limited work proposed as part

of Minsky’s theory of the Society of Mind [11, 12]. If we are to actually claim we un-

derstand the basis of human intelligence, we must also be able to discover the source

of the flexibility in thought that allows us to e↵ectively and e�ciently solve problems

using any number of these methods without any preconceived algorithms of how such

control may be implemented.
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1.1 Background

{More background research prior to...}

{The following might be better placed in the proposition section/related work?

Moved around at the least.}

Perhaps the most relevant theoretical work on the mechanisms of learning and

application of problem solving skills has been proposed and elaborated by Marvin

Minsky’s K-line theory [10], in which relevant knowledge, stored and organized hi-

erarchically, may be used to configure perceptive units (P-agents) to create partial

hallucinations of perception to assist in achieving goals and solving problems. By

synthesizing “missing” perceptions, Minsky argues that problems are more readily

identified, along with the mechanisms best suited to solving them.

Most relevant to the work presented here is Minsky’s extension of the K-line theory

to include an additional “G-net” of goals which influence which knowledge is likely to

be perceived as relevant at a given time. Just as knowledge may influence perception

through the activation of K-lines, Minsky proposes that goals may influence the ac-

tivity of knowledge (and thus, indirectly, perception) through the connections within

the net of goals as well as perceptions.

The mechanism proposed here resembles this mechanism, but e↵ects the declara-

tion of goals through the declaration of the propagator network which connects the

beliefs of propositions, rather than through explicit declarations on their own. How-

ever, perception and knowledge is encapsulated in the beliefs themselves. {rework}

1.2 Defining Flexibility

If we are to discuss the flexibility of human problem solving skills, we must better

define what exactly is meant by this term. Human problem solving appears to have a

number of elements which, while perhaps not entirely unique to humans, are features

that we see as integral to the ability to solve problems. Some of these attributes

include reactivity, goal-oriented behavior, synthesis of disparate attributes (such as
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color and location), perceived “e�ciency”, resilience to contradictory inputs, and the

ability to evaluate and make use of one of any number of di↵erent strategies using

what appears to be a single mechanism of thought.

While reactive behavior is common to practically all living things, humans ap-

pear uniquely able to not only react to physical constraints presented upon execution

of a particular problem solving mechanism, but also to theoretical, symbolic con-

straints, such as those presented in hypothetical situations and those which occur in

abstract conceptual reasoning (e.g. making reactive decisions about perceived social

and financial situations). {a useful citation to some cog sci research here would be

appropriate}

Such reactivity is particularly evident in humanity’s ability to engage in long-term

planning; when knowledge about specifics will necessarily change over time, there is

a definite need to be able to adjust any strategies seeking long-term results to ac-

count for large-scale changes in the situational environment, such as those created

by global warming, technological development, and large-scale societal change. Al-

though humans often encounter practical di�culties in envisioning and planning on

extremely long time-frames, such limitations appear to be cultural in nature, rather

than necessary limitations of human intelligence, as some social groups have proven

quite willing to solve problems with the understanding and need to plan and react to

changes on timescales beyond many hundreds of years [1].

In addition to the ease of reactive thinking and planning, human problem-solving

appears to be fundamentally goal-oriented. Humans rarely extrapolate and solve

problems that are fundamentally irrelevant to a particular goal they have in mind.

Even when solving abstract problems, such as those addressed in the field of theoret-

ical physics, there is still necessarily some goal, even though that goal may only exist

as a result of a failed attempt to solve another problem. For example, the classic

“failed experiment” of Michelson and Morley to prove the existence of the luminif-

erous aether [9] failed to achieve the goal of proving the existence of the aether, but

in so doing, established a new goal to explain the unexpected null result, to be later

resolved through Einstein’s formulation of the theory of special relativity. Since hu-
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mans necessarily solve problems on the basis of goals (even if those goals are derived

from unexpected results in solving another problem), any functionality or mecha-

nism which is capable of selecting and controlling problem solving must necessarily

be goal-oriented.

Unique to humans, however, is the ability to synthesize disparate data, a function

of human thought that appears to be a unique feature of symbolic thought. Research

by Herver-Vazquez, et al has shown that humans are uniquely capable of synthesizing

geometric features and landmarks to identify locations [4], an ability which is not

observed in rats. Thus, it would appear that general problem solving mechanisms

seeking to approximate human skills at problem solving must be able to synthesize

arbitrary features to derive solutions, lest they be unable to solve the fundamental

task of locating an object using both geometric and landmark-based cues.

It is often argued that humans are “e�cient” thinkers. Although this is rarely

well-supported in practice, as humans easily fall prey to the ine�ciencies of classical

NP-hard problems, there is a perception that humans are uniquely e�cient at solving

certain kinds of (vastly di↵erent) problems. {expand on this... sources? examples?

Gerry: “e.g. nonsense from Penrose”}

Human intelligence is also notable for its ability to handle contradictory beliefs,

which is contrary to the tenets of classical logic, which necessarily imply that simul-

taneous belief in two contradictory statements necessarily renders all statements true

(i.e. ex falso quodlibet). This suggests that human thought may not be founded in

the realm of classical logic, but that humans are actually capable of thinking within

a superset of such logic (as the mere existence of human logicians necessarily proves

that classical logic may be evaluated using the human mind).

The flaws of classical logic with respect to non-contradiction are hardly universal

however, and other logics may prove beneficial in determining the basis of thought.

Modern logics that take into account paraconsistency (such as Belnap’s four-valued

logic [7]) in which contradictions should not cause an “explosion” of conclusions, or

dialetheism, in which contradictions may, in fact, exist and be true, seem to embody

a much more pragmatic way to conceive of man’s rational thought. The rational

18



thinker attempts to resolve observed contradictions by revising his beliefs, not by

breaking down.

Most important, however, is humanity’s ability to apply a wide variety of di↵erent

approaches to solving the same problem. For example, the Pythagorean theorem may

be demonstrated by way of any one of dozens of methods including algebraic solutions,

geometric rearrangement, and even proofs based on dynamic systems (i.e. physics) [8].

While the symbolic thought of a single human does appear to be constrained to follow

one specific approach at any given time, man is free not only to apply other approaches

based on personal judgments made while solving a problem, but man is even capable

of deriving and learning new approaches solely to solve a novel problem that has yet

to be encountered, and to apply these approaches in the future. Any such system

that attempts to achieve a modicum of intelligence must be prepared to be so flexible

in its approaches to problem solving, or it is unlikely that it will truly resemble the

abilities that may be achieved by a human.

1.3 A Problem: Issuing Health Insurance

As an example of the flexibility of humans in solving problems, consider the following

scenario:

Sally is an insurance agent working for Aintno, a health insurance company. As

the reforms of the Patient Protection and A↵ordable Care Act have not yet been put

into place, it is Sally’s job to review the files of prospective customers to determine

whether or not they should be issued insurance.

When issuing insurance, Sally must determination of eligibility in accordance with

Aintno’s eligibility policies, which determine eligibility based on a system which scores

the risk of insuring a prospective customer based on a number of di↵erent criteria. For

each criterion that an individual meets, their risk score is adjusted appropriately (See

Table 1.1). Once a final score has been calculated, it is compared with a maximum

risk score threshold of 3. If the total score is greater than 3, then Aintno will refuse

to issue insurance to the customer. Otherwise, Aintno is more than happy to work
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Criteria Contribution
Customer eats healthy food -2
Customer eating habits are unknown -1
Customer eats unhealthy food +2
Customer is a skydiver +3
Customer being a skydiver is unknown +0.5
Customer is not a skydiver -0.1
Customer is a rock climber +2
Customer being a rock climber is unknown +0.25
Customer is not a rock climber -0.1
Customer is a scuba diver +1
Customer being a scuba diver is unknown +0.1
Customer is not a scuba diver -0.1
Customer rides a motorcycle +2
Customer riding motorcycles is unknown +0.2
Customer does not ride motorcycles -0.1

Table 1.1: Contributions to risk score based on personal behaviors

out an insurance policy based on the value of that score.

When Sally arrives at her desk one morning, she finds that she has been given the

file of Danny, a young adult looking for health insurance. As a prospective customer,

Danny’s eligibility must be determined before insurance may be issued. If he is not

eligible, then Sally must note that insurance was denied, and, so as to be able to

defend such denial in court, must note the reasons which lead to the denial (i.e. the

facts which led to the excessively high risk score).

Similarly, if he is eligible, she must pass the file along to the actuarial department

to finalize an o↵er to insure Danny. In this case, she must still note the risk score

and the sources of the risk, as the sources of risk are relevant to determining Danny’s

insurance rates.

In order to determine Danny’s risk score, she starts up Aintno’s custom risk anal-

ysis program and begins to input the data from Danny’s file, including his Facebook

and Flickr social network profiles, which were gleaned from an optional field which

had been filled in in Danny’s file. As she does, Aintno’s risk analysis program mines

the two profiles for useful information which may be used to determine Danny’s risk.

On Facebook, the program highlights one of his recent Facebook “likes”: one
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eats(subject , food) ^ unhealthy(food) ! eats(subject , unhealthy-food)
likes(subject , thing) ^ is-a(thing , food) ! eats(subject , thing)

likes(subject , place) ^ is-a(place, restaurant) ! eats-at(subject , restaurant)
works-at(subject , place) ^ is-a(place, restaurant) ! eats-at(subject , restaurant)
(eats-at(subject , place) ^ is-a(place, restaurant)

^ primarily-serves(place, thing)
^ is-a(thing , food)) ! eats(subject , thing)

Table 1.2: Rules for determining risk

“Hal’s Hot Dog Hut”, a hot dog restaurant. Similarly, analysis of several photographs

posted on Flickr allows the program to determine that it is probable that Danny is

employed part-time at Hal’s Hot Dog Hut, even though this is not noted in his

file. Knowing little about Hal’s Hot Dog Hut, Sally probes further and the program

quickly mines the Hal’s Hot Dog Hut website to determine that the establishment is

a restaurant that sells hot dogs which, according to common knowledge known by

the program, are not only food but, according to the FDA, are unhealthy.

With this knowledge in hand, the program is able to apply a number of pre-

programmed rules to assist in assessing and accumulating risk scores (See Table 1.2),

from which she is able to determine that Danny’s risk score is at least an unacceptably

high 5.15 thanks in part to the information gleaned from Facebook. Given this score,

Sally finds that Danny is ineligible for insurance. She makes note of this and begins

to prepare her report.

Before she finishes, however, she realizes that, according to a new law enacted

by the state in which Danny lives, insurance agencies are not permitted to use data

from Facebook in making insurance issuance decisions. She then returns to the risk

assessment program and removes the Facebook profile from the analysis inputs and

requests a reanalysis. The program again tabulates Danny’s score, and finds it to

again tabulate to at least 4.05, thanks to the Flickr account which had not been

needed last time (due to the extra cost of determining whether Danny ate unhealthy

food).

Thus confident in Danny’s ineligibility, she finalizes her report and forwards it

along to be conveyed to Danny.
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1.4 Solving Aintno

Certainly individual components of this problem could be solved using existing rule

systems, data mining tools and a simple score aggregation algorithm. But what would

it take to remove Sally from the equation altogether? Could we automate the process

of determining eligibility and eliminate the role of the human altogether?

A näıve approach to such automation would simply attempt to create a domain-

specific solution by determining the requirements and rules surrounding Sally’s work-

flow. From a low-level perspective, we may consider the act of receiving a request for

analysis to drive the process of reading and interpreting Danny’s file, which subse-

quently causes work to be done to mine and analyze information connected through

the Facebook and Flickr profiles mentioned in it, not only to better inform about

lifestyle choices Danny may not have been asked about in his application, but also to

determine whether Danny’s application may contain missing or incorrect information.

Evidently, automation is possible, but we are left with two subtle issues in accept-

ing this näıve approach to problem solving:

1. Such a domain-specific solution is likely to be brittle and require careful retool-

ing as rules, regulations, and inputs change. For example, if Facebook increases

the cost (be it computational or financial) of accessing the data it provides, the

heuristics used to guide the analysis are likely to change. Rather than querying

Facebook for every application, Aintno might only wish to query Facebook for

additional details if other parts of Danny’s application suggests that he might

be lying on his application, but proof is lacking. How can we make this solution

flexible depending on changing inputs and rules?

2. While we have a method of producing a domain-specific solution correspond-

ing to a workflow to solve a particular problem, this still doesn’t address the

fundamental act of problem solving in and of itself. It captures nothing of the

flexible planning and thought that we associate with true intelligence, as work

is likely forced into a procedural rather than declarative mode. Is it possible
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to generalize this problem-solving approach so that we rely on domain-specific

input knowledge rather than a domain-specific problem solver?

In short, such a domain-specific solution does not capture the true nature of hu-

man intelligence, as much of the flexibility and power of the human mind is left behind

during the process of building the solution according to the constraints of the prob-

lem. The fact that a human may calculate this risk in a number of innovative ways is

lost when an automated solution is constructed, as such automation ultimately imple-

ments only one such method. As a result, näıve, brittle problem-solving mechanisms

cannot be reused and may find di�culty in integrating with other domains.

1.5 Thesis Overview

This thesis seeks to outline a mechanism that achieves such flexibility in problem

solving by modelling knowledge with respect to support for a given belief. These

models are built on top of the propagator network model, described in Chapter 2,

and the proposition model of knowledge is then proposed in Chapter 3. Chapter 4

then illustrates how the propositional knowledge model may be used to solve problems

in a flexible manner. Chapter 5 explains how the belief propagation mechanism may

be used to construct meaningful explanations (justifications) for the results of such

problem solving. Finally, Chapter 6 demonstrates an example of the propositional

knowledge model while Chapter 7 o↵ers some directions for future work.
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Chapter 2

Propagator Networks

The flexible problem solving mechanism described in this thesis depends on the pow-

erful computational substrate called propagator networks, developed by Alexey Radul

and Gerald Jay Sussman [14]. This computational substrate provides a simple mech-

anism for maintaining and updating partial information structures and allows for the

refinement of partial knowledge over time. In this chapter, a short description of the

technology is provided in this chapter so that the reader may better understand the

mechanism of the belief propagation system explained in subsequent chapters.

2.1 Propagators

Propagator networks consist of a network of two kinds of elements. Propagators

are small computational units which do work on various inputs stored in single-

storage memories known as cells. Any propagator may do work based on data in

zero, one, or more cells, and may do any computation on the inputs stored in those

cells, storing the output in one or more output cells. This work may range from simple

operations such as addition and subtraction to complex calculations and algorithms.

In principle, however, most complex operations may be performed by networks of

simple propagators representing basic mathematical operators and “switches” in the

propagator network alternately connecting one of several input cells to an output cell.

Propagators serve much the same purpose as electronic components do in an elec-
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trical circuit; the ways in which simple propagators are connected will necessarily

define the contents of cells at any given point, much as electronic components will

influence the voltage and current at any given point in a circuit. Propagators also re-

semble electronic components in another way: just as partial circuit diagrams may be

abstracted and reused as “compound circuits” (such as in integrated circuits), partial

propagator networks may be abstracted and reused as “compound propagators”.

2.2 Cells

The second component of a propagator network, the cell acts as the glue of the prop-

agator network, as it stores data that may be used by propagators to do computation.

The information stored in a cell may be updated at any time by a propagator that

treats the cell as output. An update message sent to a cell by a propagator will then

be merged with the data currently in the cell using an appropriate merge operation

based on the type of data stored in the cell and the data provided in the update

message. For example, if a cell stores a numeric interval and receives as an update,

another numeric interval, it may merge the update by taking the intersection of the

two intervals, e↵ectively refining the data in the cell.

Once a cell has finished merging its content with that in the update message, it

will subsequently alert those propagators which have registered to become neighbors

of the cell. Usually, these propagators will make use of the data stored in the cell

in some way, and thus should be alerted to do additional computation based on the

newly merged data in the cell. As these propagators may then send updates to other

cells, changes to the content of a cell will e↵ectively propagate across the network of

propagators and cells.

The principle that a cell must refine its contents in the merge operation means that

propagator networks readily lend themselves to representing and manipulating partial

information. Appropriate merge operations may be constructed to e↵ectively expand

and extend the partial knowledge in a cell when an update is received. For example,

in the above numerical range example, the intersection operation is appropriate to
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refine multiple, possibly equally broad ranges to obtain a more precise answer. {This

paragraph needs to be reworded, and I haven’t got a good idea how to continue it at

the moment.}

2.3 An Example

Consider the example of a system which seeks to measure the local air temperature in

Boston in degrees Celsius using two thermometers. Like any practical measurement

device, these thermometers have an error range, and are not guaranteed to measure

the actual temperature. These thermometers do not behave identically, and it is

possible that they will report di↵erent temperature ranges. Given this fact, it is

possible to obtain a more accurate measurement of the temperature by considering

the intersection of their error ranges (since any given reading will be no more than

two degrees from the actual temperature).

In addition to their measurement flaw, these thermometers have one other prac-

tical flaw: only one measures the temperature in degrees Celsius, while the other

measures in degrees Fahrenheit. As a result, care must be taken to ensure that the

measurements of the thermometer which reads in Fahrenheit are converted to degrees

Celsius.

Given this fact, we may consider solving for the temperature of the thermometer

which reads in degrees Fahrenheit in degrees Celsius using a simple propagator net-

work given in Figure 2-1-1. Here, the thermometers act as propagators which update

cells with their estimate of the temperature range. When the Fahrenheit thermometer

reports its temperature (as in Figure 2-1-2), it sends an update to the Fahrenheit tem-

perature cell, cell A. This cell is then connected to a subtraction propagator, which

will subtract 32 from the contents of cell A and update the value in the output cell

(B) with the newly calculated value (Figure 2-1-3). A second propagator is connected

to that intermediate cell B and will multiply that value by 5
9 , and use that value to

update the Celsius temperature in cell C (Figure 2-1-4).

Note that in all steps in Figure 2-1, the cells simply adopt the contents of the
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(1)

(2)

(3)

(4)

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[87,94]

[55,62][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[30.5,34.4][55,62][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

Figure 2-1: A propagator network which combines and converts the outputs of two
thermometers, converting between Fahrenheit and Celsius. A temperature range
from thermometer 1, in degrees Fahrenheit, (2) is sent to a cell. This alerts a chain
of propagators responsible for converting the temperature range to Celsius (3, 4).
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update message to be their new content. This is due to the fact that the cells initially

contain nothing. Since there is no information with which the numeric range in the

update data can be merged, the merge operation simply sets the value of the cell.

However, when the second thermometer sends its temperature reading in degrees

Celsius as an update to cell C (Figure 2-2-1), the cell actually takes the intersection

of the current value in cell C and the value in the update and uses that value as the

new value of the cell (Figure 2-2-2). Propagators may, of course, be constructed as

reversible operations so that an update of an “output” may refine the “input”. In

Figures 2-2-3 and 2-2-4, the multiplication and subtraction propagators are imple-

mented this way and divide and add appropriately to update the temperature range

in degrees Fahrenheit in cell A. As a result, the Fahrenheit temperature range in cell

A is also an intersection of the two ranges.

2.4 Handling Contradictions

While Figure 2-2 demonstrates the value of refining numerical ranges by taking their

intersection, this raises a conundrum: what if the range in the update does not

intersect the range currently stored in the cell? Or more generally, what if an update

to a cell contains contradictory information to what is already stored in it?

When humans encounter a contradiction in practice, they typically desire to re-

solve the contradiction to obtain a new, reliable value from which additional work

may be derived. Such resolution may be done in many ways, and it may result in

additional work being done. For example, if a temperature range contradicts an ex-

isting estimate, it may be appropriate to “kick out” older contributions that may not

accurately represent the current value of a changing temperature. It might also be

appropriate to determine whether a given thermometer is broken or unusually inac-

curate, and if so, this may prompt the repair or removal of the faulty thermometer.

Because the ways in which a contradiction may be resolved may vary drastically

depending on the contents of the cell and the nature of a problem to be solved by the

network, implementations of propagator networks should be flexible in handling these
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(4)

[30.5,33][55,59.4][87,94]

Temperature
in Fahrenheit

(A)

Temperature
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(C)
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x output

(B)
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Temperature
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Temperature
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Temperature
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(A)

Temperature
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(C)
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(B)

x × 5/9x

Therm. 1 Therm. 2

Figure 2-2: Propagator networks merge the existing contents of cells with updates
received from propagators. An update in degrees Celsius from thermometer 2 (1) is
merged with existing knowledge of the temperature (2) and propagates to the output
cell containing the temperature in degrees Fahrenheit (3, 4).
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conflicts. The primary implementation of propagator networks in the Scheme pro-

gramming language, which has been used as the basis for the work in the remainder of

this thesis, normally raises an exception when a contradiction is encountered, causing

computation to halt so that humans may examine the nature of the contradiction

and resolve it in an appropriate manner.

Requiring human intervention is not a practical solution for most problems, how-

ever; it would be untenable to require human input to abort every “dead-end” in

a computation, especially in the large search spaces that lie at the core of numer-

ous kinds of problems that might wish to be resolved by a general problem solver.

While the underlying propagator network mechanism may not directly support con-

tradiction handling, the flexibility of the “cell merge” operation would certainly not

prohibit basic contradiction handling to be resolved as part of the logic of such merge

operations.

The data structure known as a truth maintenance system, or TMS, has several

features that make it particularly appropriate for handling contradiction resolution

in their merge operation.

2.5 Truth Maintenance Systems and Backtracking

Truth maintenance systems [2, 3] are a data structure which allows for the mainte-

nance of a variable’s value based on the set of minimal supports or premises for any

given value. A truth maintenance system tracks all possible premise-set/value pairs

known to be valid for a given variable, and it may be “queried” to retrieve the value

that is supported by a given set of premises. Such values may be returned with the

minimal set of premises known to support the value, conveniently allowing for the

identification of the subset of premises relevant to the specification of the returned

value.

Truth maintenance systems are appropriate contents for cells, as they may be

merged by simply taking the union of the set of values and supports in a cell and

those in the update message. The union of the value-support pairs may then be
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treated and stored as the new contents of the cell, so that smaller support sets for

an otherwise identical value may be propagated to neighboring propagators and their

output cells.

By storing values as a function of a set of premises, contradictions may not only be

identified during the merge process (i.e. when two value-support pairs with di↵erent

values are supported by the set of premises) but also resolved through manipulation

of the premise set at merge-time. Such premise-set manipulation may change the

e↵ective value stored by a cell without actually introducing a contradiction in the

value stored in the cell, as the contents of the TMS grow and change independently

from the set of believed premises, which are not subject to the contradiction behavior

of the underlying propagator network itself.

Manipulation of the premises during the cell merge operation introduces the ability

to implement algorithms that require a backtracking search. When the introduction

of a particular premise creates a contradiction which is recognized during a cell merge

which would otherwise create a contradiction, the TMS merge operation may e↵ec-

tively back out that premise so that other premises may be tested for a suitable

solution. In short, searching for the solution to a problem using propagators becomes

simply a matter of searching for the set of premises which solves a problem without

causing any contradictions.

But while backtracking is but a necessary technique for problem solving, it is

not the whole story. Propagator networks and truth maintenance systems provide a

powerful mechanism which may be used to solve problems, they are still nothing more

than a computational platform and lack any features that might assist in higher-order

problem solving strategies. To actually attack problems and control problem solving

based on needs, desires, or beliefs, we need a way to represent these needs, desires,

and beliefs beyond the simplistic value maintenance of a TMS. For that, we must

turn to the idea of the proposition.

{I should probably say somewhere about how this is similar in some respects to

constraint propagation, because it seems relevant, at least in passing}
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Chapter 3

Five-Valued Propositions

This section desperately needs some diagrams

{TODO: Read, reference AMORD}

Controlling problem solving systems requires a way to represent not only those

beliefs that act as input to the problem solvers, but also, more generally, the nature of

those beliefs which may be used to control the problem solving itself. While the facts

about Danny’s hobbies may be su�cient to determine that he should not be granted

insurance coverage, in practice, it is necessary to be able to express and recognized

the need for this determination before it may happen. I propose to unify both the

expression of these needs and the expression of input facts by representing both in

the form of propositions.

3.1 Propositions

A proposition is any statement which may be believed to be true or false. Proposi-

tions di↵er from traditional statements of fact in so far as they represent a statement

without any assertion of truth or falsehood associated with it; propositions represent

merely the concept of a statement itself. To represent the nature of belief in a par-

ticular proposition, each proposition is considered in terms of five di↵erent axes of

belief: acceptance, rejection, contradictory, knownness, and unknownness.

The first two axes, acceptance and rejection correspond to belief in the truth and
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falsehood of the proposition, respectively. That is, a proposition is accepted if it is

believed to be true, while a proposition is rejected if it is believed false. By separating

these two concepts as two distinct axes of belief facilitates the expression of complex

combinations of the support for and against a particular proposition that may be

evaluated di↵erently in di↵erent contexts.

The remaining beliefs may be expressed in reference to acceptance and rejection.

The reasons for acceptance and rejection may be considered together to determine

whether there is a contradiction in beliefs which may force backtracking and the

removal of certain assumptions that may have led to such contradictory beliefs.

Where the contradictory state of belief is the conjunction of acceptedness and

rejectedness, knownness is the disjunction of acceptance and rejection. A proposition

is known if there is support for the proposition to be either accepted or rejected.

Similarly, a proposition may be unknown entirely if there is no support for it being

either accepted or rejected.

This alternate metric of unknownness is what provides for flexibility and control

in problem solving; it is possible to use a lack of knownness to determine when work

should be done to determine a solution. Often, once a proposition is believed to be

true or false, it may be unnecessary to expend additional e↵ort to obtain additional

support. For example, in the Aintno example, there is no need to calculate a com-

plete risk score for insurance purposes; once su�cient evidence has been gathered to

determine that insurance should be denied, the work performed to acquire additional

evidence for denial is unnecessary as the relevant determination (whether the claim

should be accepted or rejected) is already made.

What is important for all of these facets of knowledge and belief is that each

state of belief is only loosely connected to the others. Excepting the basic logical

relationships (e.g. simultaneous acceptance and rejection is contradictory, and the

opposing relationship between knownness and unknownness), support for each belief

state is independent and can be used to drive problem solving separately from belief

in any of the other belief states. As a result, each belief state may drive problem

solving in a di↵erent manner appropriate to the problem. If the problem requires it,
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unknownness may be used to drive work to prove acceptance or rejection, but this

is not a requirement by any means. Similarly, the belief in the rejection of a given

proposition may be used to drive computation to disprove such rejection (e.g. if there

is a strong desire to prove acceptance through contradiction).

3.2 Implementation

The evaluation of a proposition with respect to five values is all well and good, but

how are we to actually represent this knowledge and its connections to other beliefs?

If we are to properly link propositions so that their beliefs influence each other and so

that computation and problem solving is contingent on the nature of belief, we need

to be able to construct a network of propositions, such that di↵erent states of belief

in a proposition are able to influence and modulate beliefs in other propositions and

cause computation to occur.

For example, it should be possible to condition the “acceptance” of a need to do

research on the “unknownness” of a proposition for which we would like to know.

That is, if some proposition is unknown, it should translate to an “acceptance” of

a second proposition representing the need to know the first, unknown, proposition.

Likewise, as the proposition becomes known, the second proposition, the need to

know, should become rejected.

This “propagation” of belief is appropriately handled by the data propagator

networks discussed in the previous chapter. In mapping the propositional model to a

data propagator model, it seems sensible to map the individual “beliefs” to cells while

the “rules” which relate beliefs act as propagators which connect them and forward

and combine relevant two or more belief states to generate a third.

Given the basic relationships between belief states described previously, then, we

can model a single proposition as a collection of five cells with logical propagators

connecting them as in Figure 3-1. Of special note in this particular model is the

fact that the contradiction cell is automatically populated with a value of false.

This captures the implicit assumption that no proposition may be simultaneously
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∧∨~ ContradictionUnknown Known

Rejected

Accepted

Figure 3-1: A proposition may be described with respect to five values connected in
a propagator network of logical operations. Each circle represents a “cell” containing
the data in support (or opposition) of that particular belief state, and the currently
supported value will propagate its dependencies to related belief states as needed
based on the nature of belief.

accepted and rejected. Furthermore, these propagators may be reversible (unlike

typical logical circuits which distinguish logical inputs from logical outputs) so the

false contradictory state will not only support the automated conclusion of accepted =

¬rejected, but also assists in forcing backtracking to occur when there is support for a

proposition to be both accepted and rejected (as will be described later in Section 3.4).

3.3 Dependencies and Justifications

The reasons underlying the generation of a solution to a problem are generally valu-

able in evaluating that solution. Indeed, it usually di�cult to “believe” that a par-

ticular proposition is true or false without having some measure of confidence in the

methodology by which the belief was derived. In other words, any system that at-

tempts to represent the range of human beliefs in a proposition should be prepared

to “show its work” if asked, so that other, skeptical agents (be they digital or of

flesh-and-blood) may be rightly persuaded to share that belief.

The utility of such justifications is many-fold. Not only may such justifications
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help to establish shared belief, but they are also useful in diagnosing the derivation

of incorrect beliefs and in the development of novel hypotheses by either altering the

premises that support the justification or by testing additional hypothetical premises

that may alter the justification and final belief.

For example, analysis of the orbit of Mercury using purely Newtonian mechanics

predicts the precession of its perihelion, but comparison of this expected value and the

observed value by Le Verrier in 1859 led to e↵ort being spent to resolve the conflict.

It was only after the promotion of a number of alternate hypotheses that would

potentially resolve the conflict that the replacement of the premises of Newtonian

mechanics with those modified by Einstein’s theory of general relativity resolved the

4300 per century discrepancy in Mercury’s precession.

Such “justification traces” are naturally supported by the existing propagator

framework. The semantic-rich “circuit diagrams” of propagator networks easily map

to justifications; in order to determine how a cell obtained its value, one need only

recursively trace back over the connections of the underlying network, provided that

the input propagators that are relevant to a given value are attached to the value

itself.

This is accomplished by extending the truth maintenance system structure to

additionally store the identity of the propagator which directly informed the cell to

provide each truth value and its premises. Given this information, it is possible to

follow the informant propagators backwards to the cells which they used as input,

and, from them, recursively fetch their premises and informants until the complete

justification for a belief is constructed.

3.4 Hypothetical Beliefs and Backtracking

Another feature common to a number of problem solving approaches is the concept

of the hypothetical assumption. Such assumptions play critical roles both in lower-

level proofs (e.g. proof by contradiction) as well as more complicated problems for

which certain pieces of evidence may be missing or may be assumed to exist without
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concrete support.

While these “hypothetical premises” are similar in many respects to the concrete

premises described in the previous section, they are distinguished by a more transient,

context-specific nature. Hypothetical premises rarely support more than one inde-

pendent belief directly (additional beliefs may depend on the hypothetical premise in

so far as they depend on the acceptance or rejection of another proposition, but they

generally are not supported directly).

More importantly, however, is the fact that, unlike more concrete premises, hy-

pothetical premises are generally designed to be retracted as additional evidence

supports an alternate position. For example, if we assume that a woman is childless

for the sake of determining her insurance rates and later encounter evidence that

the woman, in fact, has a son, it is desirable to reject our previous assumption of

childlessness and redetermine only those beliefs which were premised on that belief.

Thus, we would like to automatically kick out the assumption based on the fact that

more concrete premises create a contradiction.

Another example of the relative transience of the hypothetical can be found in the

argumentation form reductio ad absurdum which assumes that, if the denial of some

statement is assumed and a contradiction is encountered, said assumption may be

dismissed in favor of a “proof by contradiction” of the contrary. That is, a particular

proposition may be believed to be rejected on the basis of a hypothetical premise

and, should that premise lead to a contradiction, the premise may be kicked out and

acceptance of that same proposition supported instead based on the support for the

identified contradiction.

In the propagator network model, hypothetical assumptions may be modeled as

premises which are marked such that they may be automatically kicked out and

removed from the system when a contradiction is detected when a truth maintenance

system stored in a cell is updated. In e↵ect, the merge operation of truth maintenance

systems will preferentially remove hypothetical assumptions to remove support for

either the true or false value. New beliefs are then recalculated based on the removed

assumption.
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This principle explains why the contradictory cell is fixed to false: it causes a

truth value for acceptance to be negated for the rejected belief (so that an accepted

proposition is not rejected, and a rejected proposition is not accepted). Then, when

support arrives to support the contrary, a contradiction will be encountered in the

truth maintenance system of the accepted or rejected cell, forcing backtracking.

39



40



Chapter 4

Building Problem-Solving

Strategies

With the computational model chosen, it remains to be shown how these propositions

may be connected to properly solve problems. First, however, we must consider how

a specific problem might be solved using propositions.

4.1 A Simple Rule

Consider the following simple problem: Joe is Mary’s father, and Howie is Mary’s

son. Howie also has a son named Je↵ with his wife Jane. Is Joe an ancestor of Je↵?

To a human, this problem is easy to solve given the assumptions that a parent is

an ancestor of their child (i.e. 8a, b.parent(a, b) ! ancestor(a, b)) and that ancestry

is transitive (i.e. 8a, b, c.ancestor(a, b) ^ ancestor(b, c) ! ancestor(a, c)). In e↵ect,

we may use a simple pair of rules to draw conclusions about an individual’s ancestry

from a collection of parent-child relationships.

If the propositional model of reasoning is general enough to represent all methods

of problem solving so that they may be integrated with control, it stands to reason

that it should be possible to model one such mechanism for solving problems, the

application of rules, using propositions. The basic action of evaluating a rule has

several components:
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1. A proposition matching the pattern of the antecedent of a rule must be identified.

If we consider all propositions to be abstractly represented as n-ary predicates,

then we must be able to discover those specific predicates which match the

pattern of the antecedent predicate of the rule such that any variables in the

antecedent predicate may be filled by atoms in the specific matching proposi-

tional predicates.

Given a set of variable bindings which fix the values of variables that may be

present in the antecedent, the set of all proposition/environment pairs must be

found such that the proposition matches the antecedent pattern in arity and

all concrete atoms and “bound” variables are the same. The environment of a

given pair then consists of the union of the input variable bindings and the new

bindings derived from the alignment of the remaining “unbound” variables in

the antecedent pattern with the values in the matching proposition.

For example, if we take the above rule 8a, b.parent(a, b) ! ancestor(a, b) to

start with, we would need to find some proposition which may be matched with

the pattern parent(a, b), such as parent(howie, je↵), which corresponds to the

new set of variable bindings {a = howie, b = je↵}.

2. We must connect the relevant belief in any matching proposition to belief in

its consequent (as evaluated in the environment created by the matching the

antecedent). In short, we must create a concrete instance of the rule by binding

any variables in the rule with respect to the corresponding terms in the matching

proposition.

Since we have matched parent(a, b) with parent(howie, je↵), we have obtained

the relevant bindings a = howie and b = je↵. Thus, we may consider a specific

instance of the parent-ancestor rule parent(howie, je↵) ! ancestor(howie, je↵).

Given the nature of this rule, there is necessarily a connection between the

acceptance of the former proposition of parenthood and acceptance of the latter

proposition of ancestry. As a result, we must connect the two belief cells of the

propositions such that an a�rmative (true) belief in accepting the proposition
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Cont.U. K.
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parent(howie, jeff).

ancestor(howie, jeff).

implies

Figure 4-1: A simple network of propositions which propagates the belief in the
acceptance of parent(howie, je↵) along with its dependencies to the acceptance of
ancestor(howie, je↵). The “implies” propagator ensures that this belief is properly
propagated without modification and merged with the contents of the output cell.

parent(howie, je↵) will propagate, with its dependencies to the acceptance of

the proposition ancestor(howie, je↵), as depicted in Figure 4-1.

As a result, we might represent such the “parenthood” rule using Scheme code

like that of Figure 4-2. In prove-ancestry-by-parenthood, two propositions are

retrieved: parent-proposition (i.e. (parent a b)), and ancestor-proposition

(i.e. (ancestor a b)). With these two propositions in hand, the accept function

states that ancestor-proposition will be believed to be accepted, as informed by

(i.e. caused by) (list ’prove-ancestry-by-parenthood a b). That is, we will

potentially accept (ancestor a b) by way of the fact that we attempted to prove

ancestry through parenthood (with the specified arguments a and b).

This acceptance is not a foregone conclusion, however; the accept function also
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(define (prove-ancestry-by-parenthood a b)
(let ((parent-proposition (proposition ‘(parent ,a ,b)))

(ancestor-proposition (proposition ‘(ancestor ,a ,b))))
(accept ancestor-proposition

(list ’prove-ancestry-by-parenthood a b)
(list (accepted parent-proposition)))))

Figure 4-2: Proving ancestry through parenthood. (ancestor a b) is accepted
contingent on (parent a b) being accepted, by way of the “prove-ancestry-by-
parenthood” rule.

states through its third argument that this acceptance is based on the acceptance

of parent-proposition. While we may believe (ancestor a b) for any number of

reasons, we can only believe it is due to parenthood if we also believe that we accept

(parent a b).

4.2 Knowing the Unknown

While the above example is perfectly acceptable should we know a and b, what if we

do not? As stated above the rule 8a, b.parent(a, b) ! ancestor(a, b) does not require

us to know a and b. Indeed, it is true for all a and b. Would it not be better to be

aggressive and proactively find parents to prove ancestry without having to be told

which ones we are looking for?

There are several problems that must be surmounted with such an approach. The

most obvious di�culty is that of finding all such propositions that match (parent a

b). While we can certainly can use e�cient database storage and indexing algorithms

to find all such (parent a b) that we are aware of at the time we are told the rule, we

must also be aware that it is very unlikely that we know all parenthood relationships

at that particular point in time. Furthermore, if a system is intelligent enough to

know the generic existence of parents (in short, parent(b, c) ! 9a.parent(a, b)), then

a system may easily get lost simply proving the existence of parents ad-infinitum

rather than discovering a relevant ancestry relationship.

Even lacking such a general rule, from a pragmatic standpoint, it is also quite
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(define (accept-ancestor-by-parenthood
parent-proposition environment)

(let ((ancestor-proposition
(instantiate-proposition ’(ancestor ?a ?b) environment)))

(accept ancestor-proposition
(list ’prove-ancestry-by-parenthood

(get-binding ’?a environment)
(get-binding ’?b environment))

(list (accepted parent-proposition)))))))

(define (prove-ancestry-by-parenthood)
(find-proposition-matching ’(parent ?a ?b) ’()

accept-ancestor-proposition-by-parenthood)

Figure 4-3: Proving ancestry through parenthood generally. For every (parent ?a
?b) that is known, (ancestor ?a ?b) is accepted contingent on that (parent ?a
?b) being accepted, by way of the “prove-ancestry-by-parenthood” rule. Note the
introduction of the environment variable which contains the variable bindings to a
and b. {Maybe merge accept-ancestor-by-parenthood back into prove-ancestry-by-
parenthood?}

possible that we may not know about certain (parent a b) relationships at a given

time, due simply to their current “irrelevance.” In other words, at any given point

there are unknown unknowns ; not only do we not know whether we accept or reject

some arbitrary (parent a b), but there are (parent a b) propositions of which we

are not even remotely aware!

When making such a pattern matcher, then, we must take care that it is lazy.

Any move to prove ancestry through the existence of a parenthood relationship must

be ready to acted on at any time as new parenthood relationships are introduced

and believed to be true. That is, we must be prepared to make the connections

between propositions asynchronously by making such connections in callbacks which

are invoked whenever such a statement is generated. Thus, we elaborate the code as

in Figure 4-3, which pushes the connection of the “acceptance” belief cells into the

function accept-ancestor-by-parenthood which may be called when a matching

proposition is found.

Note that here we replace the instantiation of a proposition (parent a b) with

45



the find-proposition-matching function, which instead searches for existing propo-

sitions which match the pattern (parent ?a ?b), where the question marks de-

note named variables a and b. Upon finding any such proposition, the function

accept-ancestor-by-parenthood is called with a first argument containing the

matching proposition, and a second argument containing a mapping of the variable

names to the values resulting from matching the pattern with an appropriate propo-

sition.

For example, given the matching proposition (parent howie jeff), the prop

variable would contain the proposition itself, while the contents of the environment

variable could be used to determine that the variable ?a would be bound to howie

and the variable ?b would be bound to jeff.

These environmental bindings are then used in turn in instantiate-proposition

in which they are substituted for the ?a and ?b variables in the pattern (ancestor ?a

?b) so as to instantiate the proposition (ancestor howie jeff) before connecting

the acceptance belief of (parent howie jeff) to (ancestor howie jeff) as in

Figure 4-2. Similarly, the get-binding function must be used to resolve the bindings

to ?a and ?b for use with the explanation of the method used to conclude acceptance.

The observant reader will note that the find-proposition-matching function

takes an empty list as its second argument. Such a second argument is particularly

helpful when considering the chaining of multiple patterns, as in the ancestor-chaining

rule implemented in Figure 4-4. As the variable ?b must be the same value in both

(ancestor ?a ?b) and (ancestor ?b ?c) to prove ancestry through transitivity,

the environmental bindings created by matching the former must be passed to the

latter so as to partially instantiate the pattern (ancestor ?b ?c) by binding the

known value of ?b. Thus, the second argument acts as an environment in which to

evaluate the pattern before performing a search, and the empty list merely denotes

an empty initial environment containing no variable bindings.
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(define (prove-ancestry-by-parenthood)
(find-proposition-matching ’(ancestor ?a ?b) ’()

(lambda (prop-1 environment)
(find-proposition-matching ’(ancestor ?b ?c) environment

(lambda (prop-2 environment)
(let ((ancestor-proposition (instantiate-proposition

’(ancestor ?a ?c)
environment)))

(accept ancestor-proposition
(list ’prove-ancestry-transitively

(get-binding ’?a environment)
(get-binding ’?b environment)
(get-binding ’?c environment))

(list (accepted prop-1)
(accepted prop-2)))))))))

Figure 4-4: Proving ancestry through transitivity. For every (ancestor ?a ?b) and
(ancestor ?b ?c) that is known, (ancestor ?a ?c) is accepted contingent on those
two previous ancestor relationships being accepted, by way of the “prove-ancestry-
transitively” rule. Note how the environment variable is carried as an argument to
the nested find-proposition-matching function, and how it implicitly carries the
bindings of the named variable a through to the inner lambda in which the proposition
(ancestor ?a ?c) is instantiated.
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4.3 Making Work Contingent

So far, we have worked under the assumption that the mere existence of a proposition,

regardless of our belief in it, is justification enough to connect any tentative acceptance

of that proposition with the consequent proposition of the rule. This has a distinct

downside in that we will necessarily be doing work for propositions which may never

be accepted (e.g. if they may be rejected in the future rather than accepted). If, for

example, our simple ancestor problem solver is given, as a proposition, every potential

parent-child relationship in the United States for a child under the age of 18, this

would mean that our problem solver would need to build nearly 75 million minors⇥

300 million citizens = 2.25 ⇥ 1016 ancestor relationships {cite}, even though only

about 150 million of those relationships would ever be accepted!

It would be far more reasonable to make any problem solver’s work contingent, not

on the mere existence of some proposition, but on the nature of our belief in it in the

first place! Rather than blindly matching every proposition (parent ?a ?b), which

results in doing far more work than our original rule, should we not preferentially

connect only those parent propositions which we already accept? Do we not want to

help control our problem solving based on what we believe?

If so, perhaps an appropriate solution would be to make the body of the function

accept-ancestor-by-parenthood contingent on a particular belief. For example,

only when a matched proposition (parent ?a ?b) is believed to be accepted should

the connection be made between acceptance of the parent statement and the accep-

tance of ancestry. In e↵ect, we could make the act of connecting a distinct propagator

neighbor of the accepted state of the parent proposition, as in Figure 4-5. When coded

up properly using the s:when propagator, which lazily evaluates its body only when

the condition becomes true, such a rule might look like that of Figure 4-6.
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Figure 4-5: Lazily attaching a rule using the s:when propagator, which builds the
connection between the acceptedness of parent(howie, je↵) and ancestor(howie, je↵)
only when the parent relationship is accepted.
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(define (prove-ancestry-transitively)
(find-proposition-matching ’(ancestor ?a ?b) ’()

(lambda (prop environment)
(s:when (accepted prop-1)

(find-proposition-matching ’(ancestor ?b ?c) environment
(lambda (prop-2 environment)

(s:when (accepted prop-2)
(let ((ancestor-proposition (instantiate-proposition

’(ancestor ?a ?c)
environment)))

(accept ancestor-proposition
(list ’prove-ancestry-transitively

(get-binding ’?a environment)
(get-binding ’?b environment)
(get-binding ’?c environment))

(list (accepted prop-1)
(accepted prop-2)))))))))))

Figure 4-6: Lazily proving ancestry through transitivity. Even though propositions
matching (ancestor ?a ?b) and (ancestor ?b ?c) might exist, this function will
wait until both propositions are actually accepted before accepting the consequent
(ancestor ?a ?c), as the s:when function will lazily evaluate its body only when
the contents of the cell in its first argument (i.e. accepted belief state of the given
proposition) is true.

(define (prove-ancestry-transitively)
(rule ((a (accepted (a-prop ’(ancestor ?a ?b))))

(b (accepted (a-prop ’(ancestor ?b ?c)))))
(accept (the-prop ’(ancestor ?a ?c))

(list ’prove-ancestry-transitively a b)
(list a b))))

Figure 4-7: A simple syntax for lazily proving ancestry through transitivity. This
code e↵ectively expands to the code given in Figure 4-6
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4.4 Simplifying the Code

Because of the complexity of the rules like that of Figure 4-6, the remainder of this

thesis will make use of a simplified syntax given in Figure 4-7. This syntax expands

into the syntax of Figure 4-6 through a macro expansion.

The syntax is designed to be relatively straightforward to understand. In short,

the rule keyword behaves much as the Scheme let keyword, and consists of a list of

variable assignments and a body. The list of variable assignments assigns the various

cells of a belief state (e.g. accepted, unknown) to variables, with the a-prop keyword

e↵ectively acting as a genererator which returns a proposition matching the specified

proposition pattern.

Propositions are matched in order, with the environment for each matching propo-

sition being used in turn to match subsequent proposition (e↵ectively finding each

proposition in order using subsequent nested find-proposition-matching functions,

each taking as argument the environment returned by the previous proposition). As

a result, all sets of propositions matching the list are discovered.

The body of the rule will only execute conditionally upon the truth of all belief

states in the list of variable assignments, much like the body of the s:when propagator.

Thus, the connection of the acceptance or rejection of a proposition as specified in the

body will only occur so long as all of the conditions in the list are true. Furthermore,

as each proposition in the variables is found in order, as soon as one of the proposition

cells is no longer true, work will cease.

The accept inside the body of the rule behaves identically to the function used

above, except that the-prop acts to expand the proposition with respect to the

environment implicitly defined by the enclosing matched variables. That is, the-prop

returns the proposition defined by instantiate-proposition with the same pattern

and the environment returned by the final matched proposition in the list of variables

of the rule. There is also no need to explicitly obtain the accepted state of the

matching propositions as those states are automatically stored in the named variables

which are reused in the body of the accept.
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Thus, in short, the rule keyword e↵ectively defines a rule with a given rule body

(the list of belief states of propositions which must all be believed) and rule head (the

body in which work is done). {Something about nesting rules?}

4.5 Controlling for Unknownness

Despite this improvement, there remains yet another ine�ciency. While propositions

will now only be connected if a parent relationship is accepted, such a problem solver

is still useless for specific cases. Proving only 150 million ancestor relations is better

than many times that, but it’s unlikely that we would care to determine every ancestor

relationship. In practice, such an “ancestor finder” would want to focus only on Je↵’s

ancestry rather than every possible ancestor in the United States.

The insight regarding the lazy construction of the propagator network is a crucial

one to solving this smaller problem, as we may make use of belief states other than

mere acceptance to help control the process of problem solving. Rather than creating

the relationship when we accept a parent relationship, why not simply extend the

lazy rule mechanism to e↵ectively activate and deactivate its “search for ancestors”

based on the goal of proving Je↵’s ancestry?

Figure 4-8 (example code in Figure 4-9) depicts how such a network might operate.

Both a basic desire to know and a lack of knowledge combine to serve as the input to a

s:when propagator, so that the construction of the conditional network in Figure 4-5

will not even occur unless there is a need to know the ancestry relationship, and the

ancestry relationship’s unknown belief state is true. Once it is true (bottom), the

secondary conditional network is created.

A crucial di↵erence between Figure 4-8 and Figure 4-5, however, is that as the

s:when in the former is conditioned on the unknownness of the ancestor relationship,

once the ancestry is known, the s:when is turned o↵. If the contents of the s:when

actually listen for a number of possible candidate matches and construct the connec-

tion for each one (e.g. in the recursive case, where there may need to be a number

of di↵erent ancestry relationships that must be built transitively), this work may be
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Figure 4-8: Controlling the search for ancestors only when such a search is needed.
Only when (want-to-known (ancestor ?a ?b)) is accepted and the corresponding
(ancestor ?a ?b) proposition is unknown will a proof be attempted (bottom). If
the ancestry proposition is known (i.e. accepted as true or rejected as false) for any
reason, work to prove ancestry will cease.
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(define (prove-ancestry-by-parenthood)
(rule ((k (accepted (a-prop ’(want-to-know (ancestor ?a ?b)))))

(u (unknown (a-prop ’(ancestor ?a ?b)))))
(rule ((p (accepted (a-prop ’(parent ?a ?b)))))

(accept (the-prop ’(ancestor ?a ?b))
(list ’prove-ancestry-by-parenthood k u p)
(list p)))))

Figure 4-9: Controlling the search for ancestors only when such a search is needed.
This code corresponds to the behavior in Figure 4-8.

turned o↵ when the ancestry relationship has been proved. In short, as soon as we

know that there is (or is not) such ancestry, we automatically cease doing additional

work to prove it!
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Chapter 5

Building Explanations

While a problem solver capable of answering arbitrary complex problems is indeed

valuable, the answers it produces are necessarily only as reliable as they can be proven

to be correct. Certainly mathematical and theoretical approaches may be used to

derive the correctness of a given algorithm, but such approaches cannot necessarily

account for incorrect inputs or assumptions which may produce erroneous answers.

As a result, a problem solving system that is capable of providing justifications for its

answers is more valuable and useful than one which cannot. Can the problem solver

described in the previous chapter be modified or manipulated to produce meaningful

justifications? {This seems like it could be strengthened as an argument.}

5.1 What is a Justification?

Before we can evaluate whether or not the propositional reasoning system can be

modified to support the creation of meaningful explanations for its answers, we must

first define exactly what is meant by the words explanation and justification.

By explanation, we speak of the common-sense idea that a particular action,

product, or belief may be described in terms of the mechanisms by which the action

was caused to happen, the product was caused to be made, or the belief was caused

to be held. Generally speaking, an explanation consists of a story of how a particular

state came to exist, that is, the sequence of events that, taken as a whole, caused a
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particular action, product, or belief to exist.

A justification is an explanation that is typically minimal in extent. For the

purposes of this thesis, a justification does not include incorrect decisions and actions

that were irrelevant to the production of a given state except in so far as they may

have impacted the sequence and timing of the events that are relevant to the state

being justified.

In short, an explanation is a description of what happened before the state existed,

while a justification is a description of the causal tree, including both proximal and

distal causes, which, if considered as a partially-ordered directed graph of cause to

e↵ect, would be su�cient to explain the evolution and production of a given state.

While the primary focus of this chapter is on justifications specifically, I will use the

words explanation and justification interchangeably to refer to justifications.

{Is this an accepted definition? Should I include relevant citations that discuss

this point? Probably so.}

Justifications are similar in many respects to the concept of document provenance,

which typically represents “the record of actions taken on [a] particular document over

its lifetime,” {cite Hasan09} and data provenance, which is a description of how a

particular piece of data came to be and arrived in a given database {cite Buneman01,

or perhaps wait to expand on it because he introduces where- and why-provenance

which we describe in the next paragraph}.

Finally, it is worth keeping in mind that we should di↵erentiate justifications (i.e.

the reasons for something) from dependencies, which describe the ultimate supports

for something. While the former tells us how we got somewhere (in the vein of

Buneman’s “why-provenance”), the latter tells us only those facts or sources that we

depended on to get there (à la Buneman’s “where-provenance”).

5.2 The Suppes Formalism

So how can we characterize a justification of a particular belief produced by a propo-

sitional problem solver? As I have demonstrated in Chapter 4, the beliefs held by
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propositional problem solvers evolve over time based on the logical connections (often

implication relationships) between di↵erent belief states. What is a natural formalism

for justifications for this evolution?

Since we speak of logical relationships, a näıve conclusion would be to say that

our justifications should take the form of logical proofs. This is not an unreasonable

stance to take, given the fact that all of the examples that have been shown so far

involve logical implications, conjuctions, and disjunctions. But what if more complex

propagators are used to solve a problem? Not all problems are best formulated in

terms of a Boolean algebra. Numerical solutions may be more amenable to mathe-

matical algebraic proofs, and it is quite possible that the relationships between belief

states as expressed by the propagators that connect them may not even be purely

Boolean or algebraic in nature!

Even so, a generic sense of a proof seems quite reasonable to consider, as long as

we expand the definition of an operation to include any general-purpose propagator.

One wrinkle complicates the adaptation of a simple proof mechanism. As men-

tioned in the previous chapter, navigation of the the answer space necessarily requires

the correct management of the dependencies which are trusted at any given point in

time. Indeed, it should be possible not only to trace the “why-provenance” but also

the “where-provenance” for any given belief in our system so that the proper deriva-

tion of a belief may be well understood and demonstrated.

While typical proofs only point to the processes by which a derivation or ma-

nipulation of data occurs, the proof formulation proposed and utilized by Patrick

Suppes [16] captures not only the nature of the derivation, but also indicates the

dependencies upon which these conclusions are based. An example of such a proof

may be seen in Figure 5-1, Example 2 from Chapter 2 of Suppes, which demonstrates

the application of premises (P), tautological implication (T), and conditional proof

(C.P.) to prove the existence of an implication relating to placement in a baseball

wild card race.

{Is this acceptable? I wish to give proper credit, but I do not like lifting wholesale

unless it is appropriate. Perhaps another example of my own design would be better?}
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{1} (1) C ! (D ! B) P
{2} (2) �G _ C P
{3} (3) D P
{4} (4) G P
{2, 4} (5) C 2, 4 T
{1, 2, 4} (6) D ! B 1, 5 T
{1, 2, 3, 4} (7) B 3, 6 T
{1, 2, 3} (8) G ! B 4, 7 C.P.

Figure 5-1: Example 2 from Chapter 2 of Suppes’s Introduction to Logic, in which
Suppes proves the following (symbolic annotations mine): “If the Cards are third
(C), then if Dodgers are second (D) the Braves will be fourth (B). Either the Giants
will not be first (�G) or the Cards will be third. In fact, the Dodges will be second.
Therefore, if the Giants are first, then the Braves will be fourth.”

In the proof, Suppes tracks not only the premises upon which each subsequent

statement depends (left column), but also the reasons for derivation (right column).

As such, Suppes’s proof formalism demonstrates that it is possible not only to show

(8) G ! B, but also that it is directly derived from (4) G and (7) B by conditional

proof, and depends on acceptance of the premises (1) C ! (D ! B), (2) �G_C, and

(3) D to be shown.

Suppes’s example also demonstrates the di↵erence between dependencies and jus-

tifications. Although the premise (4) G is an integral part of the proof of (8), the

conclusion does not actually depend on it being true because the nature of a condi-

tional proof!

5.3 Building Justifications

Given the power and relevance of Suppes’s formalism to propositional reasoning by

managing both justifications and dependencies jointly, can we integrate Suppes’s

formalism into the propositional reasoning system in such a way that we may gain the

power of justification generation seamlessly without any additional syntactic changes

to our propositional reasoning? It turns out that this is indeed possible, by making

use of the innate graph structure of the propagator network.
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Since a propagator network may be envisioned as a graph, it is possible to impose

a data structure above and beyond the basic propagator “publish-subscribe” model

to abstract the implicity structure of propagators into a navigable directed graph.

The MIT-Scheme implementation of propagators includes such an abstraction which

implicitly groups all cells into groups called diagrams.

Diagrams are defined recursively, as diagrams may contain one or more parts which

are also diagrams. Cells are fundamental diagrams consisting of no parts, and more

complex diagrams may be made from combining cells and diagrams which contain

them as descendent parts.

As a result, conceptually, the diagram structure of a propagator network is a

pyramidal directed graph (as in Figure 5-2) that e↵ectively maps cells on the com-

putational level to the “components” to which they belong at decreasing levels of

abstraction. A given diagram (or cell) may belong to any number of parent “clubs”

(i.e. parent diagrams of which the diagram is a part), so that the given pyramid

of diagrams is not a tree structure but a directed graph. The creation of propaga-

tors automatically constructs diagrams at the first abstraction layer above basic cells,

connecting those cells which it reads and writes as “parts” of the initial abstract

diagram.

As multiple propagators may claim a cell as a “part” of the parent diagram,

certain lower-level diagrams may be easily identified as “boundaries” between di↵erent

diagrams at a higher abstraction level when a given diagram has multiple paths to

the highest abstraction level. For example, cell C in Figure 5-2 belongs not only to

temperature-converter, but also weather-model, and as such may be seen as a cell

which is on the boundary of the two diagrams.

By annotating the “part” relationships at network creation time, it is possible to

additionally determine whether cell C is an input to A, an input to B, or both, as the

propagators themselves have knowledge as to whether or not their implementation

will read a cell or write a cell (or both). As such, promises to “read a cell only” may

be interpreted as cells which are input to the diagram, while promises to “write only”

would similarly be interpreted as output.
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Figure 5-2: A complex propagator network maps to a pyramidal semantic structure
with more abstract operations representated at higher levels. At the top, three cells,
A, C, and C are connected by two compound propagators, temperature-converter
and weather-model. Both compound propagators expand into additional, more basic,
partial propagator networks. Below, the same network is laid out in terms of its
diagrammatic structure. Level 3 represents the concrete cells of the network, while
higher levels represent the propagators and compound propagators that connect them.
All directed arrows represent “part-of” relationships between cells and diagrams at
one level and the diagrams that belong to a higher level. Colors and line patterns
represent annotations that may be made (e.g. a promise that a given cell is used only
as input/output by a propagator).
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Justifications for the content of a cell may thus be constructed by climbing the

“diagram pyramid” to an appropriate abstraction level, identifying “input” cells, and

then querying those cells for their contents and working to their inputs in turn. In

this manner, a list of antecedent cells and values may be e↵ectively crawled at a given

abstraction level using an appropriate graph-traversal algorithm, and the values of

those cells may be collected, along with the dependencies and any other information

stored in the TMS in each cell.

{Should this be expanded upon? Probably one other figure in addition to the

above, incomplete one. Something about how levels are counted? Practical code?}

5.4 Simplifying Justifications

One significant issue encountered when constructing a justification is the choice of an

appropriate abstraction level for the justification. For example, when converting a

temperature between degrees Fahrenheit and degrees Celsius, as in Chapter 3, it may

be useful to detail each step in the conversion to demonstrate that the conversion is

working correctly. On the other hand, if the conversion is part of a much larger system,

such as a numerical weather model, the precise provenance of each mathematical step

to convert is less relevant; it may su�ce to simply state that the temperature was

converted, leaving the exact mathematical operations implicit.

Given this, it would be incredibly useful if we did not necessarily commit to a

level of detail until the time the justification was generated. That is, our choice of

mechanism for producing justifications should not prevent us from obtaining multiple

levels of detail in a justification.

Fortunately, this struggle between the simple and the complex is easily resolved in

the diagram model. The pyramidal structure of the diagram-part relationship allows

for the creation of any number of abstraction layers between the lowest “computa-

tional” units and the highest level which represents the problem solver itself. As a

result, it is possible to choose to display a given level of explanation (simple to com-

plex) by simply selecting an appropriate abstraction level to generate explanations.
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A simple explanation may be generated by simply climbing to one of the highest ab-

straction levels (e.g. level 1 in Figure 5-2); a detailed explanation may be generated

at a lower abstraction level (e.g. level 2).

5.5 An Example

{I should probably plot out a detailed example of crawling and generating an expla-

nation here. I don’t really want to bring it back to the insurance example, as that

probably deserves an entire chapter to itself, so I need another example.}
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Chapter 6

Propositions in Practice

So far, I have demonstrated the principles of the propositional reasoning system, but

I have yet to demonstrate its viability in solving real world problems such as the

insurance company scenario presented at the beginning of this thesis. In this chapter,

I intend to walk through the implementation of a propositional problem solver capable

of addressing that very problem. In so doing, I hope that the principles that I have

laid out in previous chapters will be made obvious.

6.1 The Problem

As stated previously, consider an insurance agent, Sally, who works for the insurance

company Aintno. As she reviews the file of a prospective customer, Danny, she must

make a decision on his eligibility for insurance based on his risk and activity. As part

of his application, he has included information about his Facebook and Flickr social

networking accounts, among the many other details in his application.

Sally feeds this application to an assisting proposition-based problem solver which

must then decide whether or not Danny is eligible for insurance based on a set of

scoring criteria (Table 6.1). If Danny’s aggregate score is greater than 3, Danny is

ineligible for insurance.

This problem solver has the ability to crawl the social network information Danny

has provided and use the conclusions drawn from that information (posts, photos,
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Criteria Contribution
Customer eats healthy food -2
Customer eating habits are unknown -1
Customer eats unhealthy food +2
Customer is a skydiver +3
Customer being a skydiver is unknown +0.5
Customer is not a skydiver -0.1
Customer is a rock climber +2
Customer being a rock climber is unknown +0.25
Customer is not a rock climber -0.1
Customer is a scuba diver +1
Customer being a scuba diver is unknown +0.1
Customer is not a scuba diver -0.1
Customer rides a motorcycle +2
Customer riding motorcycles is unknown +0.2
Customer does not ride motorcycles -0.1

Table 6.1: Contributions to risk score based on personal behaviors

etc.) to justify arguments in favor of a given risk score. Indeed, such justifications

are a necessary part of the problem solver; once a score has been generated, Sally

must include a justification for the score when she submits her final decision with

respect to granting or denying eligibility to Danny.

6.2 Bootstrapping the System: Propositions

For the purposes of this example, I will assume that the problem of extracting beliefs

from images and free-form text is largely solved and that such algorithms are capable

of populating belief states of appropriate propositions that are indexed in a database.

This is a reasonable assumption to make as algorithms for entity and sentiment ex-

traction from text and object and gesture recognition in images is an area of active

research that is not particularly relevant to the problem of actually calculating a risk

score to be addressed in this example.

As a result, the propositions that might be discovered by such a system are rather

simple to express by simply populating the belief state of such propositions that may

have been uncovered. Some of these propositions are given in Table 6.2.
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Proposition Current Belief Evidence
Danny engages in skydiving accepted Facebook post
Danny engages in motorcycling accepted Flickr photo
Danny engages in SCUBA diving rejected Danny’s forms
Danny engages in rock-climbing unknown Danny’s forms
Hal’s Hot Dogs is a restaurant accepted Hal’s Hot Dogs website
Hal’s Hot Dogs primarily sells hot dogs accepted Hal’s Hot Dogs website
Hot dogs are food accepted common knowledge
Hot dogs are unhealthy accepted FDA
Danny works at Hal’s Hot Dogs accepted Danny’s forms
Danny likes Hal’s Hot Dogs accepted Danny’s forms

Table 6.2: Propositions which might be believed about Danny

As stated in Chapter 3, we may express propositions by virtue of creating ap-

propriate partial propagator networks for each proposition and populating the value

stored in the TMS in the appropriate belief state with the dependencies (i.e. the

posts, photos, etc.) from which the belief was established. In our MIT Scheme prob-

lem solver, a proposition may be constructed using the proposition function which

is passed the pattern of the proposition to be asserted as its argument (for example,

(proposition ’(Danny engages-in skydiving))).

But how do we populate our initial beliefs? For this, we may “tell” a partic-

ular belief state a value. The tell! function automatically constructs an update

which is sent to the cell specified as the first argument of the function. The value

is then given as the second argument, and the dependencies are all subsequent argu-

ments. Thus, we might state that (Danny engages-in skydiving) is accepted by

way of a Facebook post through the function call (tell! (accepted (proposition

’(Danny engages-in skydiving))) #t ’Facebook). In this way, we update the

accepted belief cell with the true value (#t) and a dependency of Facebook.

In practice, we may simplify stating true, false, and unknown values by making

appropriate functions to shorten the verbose tell! syntax for these common cases,

as in Figure 6-1. With these functions in hand, it becomes relatively simple to express

basic beliefs, which are given in Figure 6-2. Each function automatically creates the

propagator network for each proposition if it does not already exist. Otherwise, the
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(define (true! pattern source)
(tell! (accepted (proposition pattern)) #t source))

(define (unknown! pattern source)
(tell! (unknown (proposition pattern)) #t source))

(define (false! pattern source)
(tell! (rejected (proposition pattern)) #t source))

Figure 6-1: The tell! function can be simplified to refer to only the true, false
and unknown cells.

proposition is retrieved from a database.

6.3 Bootstrapping the System: Rules

Establishing the basic belief states is only half of the puzzle, however. The core

of any problem solver are the rules and algorithms which allow it to actually draw

conclusions, and those have yet to be established. To do so, we turn to Chapter 4,

which demonstrated the construction of a number of problem solving rule components.

Expression of the scoring rules in Table 6.1 may be readily expressed in terms

of simple rules using the rule syntax introduced at the end of the chapter, as each

appropriate belief state would be matched to establish the contribution to risk. Some

of these rules can be seen in Figure 6-3, where a simple pattern match against an

appropriate belief state is su�cient to accept a “contribution to risk” of an appropriate

size.

For example, in the case of the risk if a customer is a sky-diver, the proposi-

tion (contribution risk ?subject 3.0 skydiver) is accepted for a given subject

only when the proposition (?subject engages-in skydiving) is accepted. Such

a proposition is accepted contingent on (i.e. dependent on) the acceptance of the

engages-in statement, but it is also labeled with the why-provenance in its sec-

ond argument, stating that the acceptance of the risk contribution is due to (list

’risk-estimate ’skydiving), that is, based on a risk-estimate with respect to sky-

diving specifically.
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;;; Ground facts about Danny

(true! ’(Danny engages-in skydiving) ’Facebook)

(true! ’(Danny engages-in motorcycling) ’Flicker)

(false! ’(Danny engages-in scubadiving) ’Danny)

(unknown! ’(Danny engages-in rockclimbing) ’Danny)

;;; His eating habits

(true! ’(hals-hotdogs is-a restaurant) ’Hal)

(true! ’(hals-hotdogs primarily-serves hotdogs) ’Hal)

(true! ’(hotdogs is-a food) ’common-knowledge)

(true! ’(hotdogs is unhealthy) ’FDA)

(true! ’(Danny works-at hals-hotdogs) ’Danny)

(true! ’(Danny likes hals-hotdogs) ’Danny)

;;; Ground facts about AINTNO

(true! ’(risk-accept-threshold AINTNO 2) ’aintno-1)

(true! ’(risk-reject-threshold AINTNO 3) ’aintno-2)

Figure 6-2: Beliefs captured by the risk scoring system based on information gleaned
from Danny’s Facebook and Flickr accounts, as well as his insurance application (the
last labelled with a dependency of ’Danny). In addition, two risk score thresholds
are included as belief states.
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(rule ((s (accepted (a-prop ’(?subject engages-in skydiving)))))
(accept (the-prop ’(contribution risk ?subject 3.0 skydiver))
(list ’risk-estimate ’skydiving)
(list s)))

(rule ((s (unknown (a-prop ’(?subject engages-in skydiving)))))
(accept (the-prop ’(contribution risk ?subject 0.5 skydiver))
(list ’risk-estimate ’skydiving)
(list s)))

(rule ((s (rejected (a-prop ’(?subject engages-in skydiving)))))
(accept (the-prop ’(contribution risk ?subject -0.1 skydiver))
(list ’risk-estimate ’skydiving)
(list s)))

Figure 6-3: Rules establishing contributions to risk with respect to whether an indi-
vidual is a sky-diver

Rules can, of course, be more complex. Aintno’s policy may state, for example,

that whether or not Danny eats unhealthy food is only relevant if there is a need to

determine whether or not he eats unhealthy food (i.e. if there is su�cient evidence to

reject Danny on another basis, there is no reason to investigate Danny’s eating habits).

In such a case, we can turn to the more complex want-to-know formula expressed at

the end of Chapter 4. Such an expression might resemble that in Figure 6-4.

But a rule such as that in Figure 6-4 is only half of the story. We must still have

some way to establish the need to determine whether Danny eats unhealthy food. For

that, we might wish to condition the specific “need to know” on a more general belief

that “information is lacking”. Such a condition would necessarily connect a general

directive to find enough information to properly score Danny with the specific ways in

which the information may be found (e.g. asking whether Danny eats unhealthy food).

As such we may include a rule like that in Figure 6-5, which not only conditions the

scoring of unhealthy eating habits, but also the establishment of the “need to know”

on the general need for more information.

Such a connection may seem at first glance to be needless pedantry which may

lead to an infinite regress of determining whether we “need to know that we need to
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(rule ((req (accepted (a-prop ’(does ?subject eat unhealthy-food)))))

(rule ((e (accepted (a-prop ’(?subject eats ?food))))
(f (accepted (a-prop ’(?food is unhealthy)))))

(accept (the-prop ’(?subject eats unhealthy-food))
(list ’common-sense ’food)
(list e f)))

(rule ((l (accepted (a-prop ’(?subject likes ?thing))))
(t (accepted (a-prop ’(?thing is-a food)))))

(accept (the-prop ’(?subject eats ?thing))
(list ’preference ’food)
(list t l)))

(rule ((p (accepted (a-prop ’(?subject likes ?place))))
(r (accepted (a-prop ’(?place is-a restaurant)))))

(accept (the-prop ’(?subject eats-at ?place))
(list ’likes ’restaurant)
(list p r)))

(rule ((p (accepted (a-prop ’(?subject works-at ?place))))
(r (accepted (a-prop ’(?place is-a restaurant)))))

(accept (the-prop ’(?subject eats-at ?place))
(list ’works-at ’restaurant)
(list p r)))

(rule ((p (accepted (a-prop ’(?subject eats-at ?place))))
(r (accepted (a-prop ’(?place is-a restaurant))))
(s (accepted (a-prop ’(?place primarily-serves ?thing))))
(f (accepted (a-prop ’(?thing is-a food)))))

(accept (the-prop ’(?subject eats ?thing))
(list ’eating-at ’restaurant)
(list p r s f)))

)

Figure 6-4: Rules that help determine whether or not Danny eats unhealthy food.
Such rules might only ever be active (i.e. work might only ever done to prove that
he eats unhealthy food) if there is not su�cient proof to render Danny ineligible for
insurance.
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(rule ((i
(accepted
(a-prop ’(?company needs-more-information ?subject)))))
;; Eating unhealthy food is questionable, but not worth looking at
;; unless not enough other information to determine eligibility.
(accept (the-prop ’(does ?subject eat unhealthy-food))
(list ’digging-deeper)
(list i))
(rule ((e (accepted (a-prop ’(?subject eats unhealthy-food)))))

(accept (the-prop
’(contribution risk ?subject +2 eats-unhealthy-food))

(list ’risk-estimate ’unhealthy-food)
(list e)))

(rule ((e (unknown (a-prop ’(?subject eats unhealthy-food)))))
(accept (the-prop

’(contribution risk ?subject -1 unknown-food-habits))
(list ’risk-estimate ’unhealthy-food)
(list e)))

(rule ((e (rejected (a-prop ’(?subject eats unhealthy-food)))))
(accept (the-prop

’(contribution risk ?subject -2 eats healthy-food))
(list ’risk-estimate ’unhealthy-food)
(list e))))

Figure 6-5: There only exists a need to score the risk from eating unhealthy food
if there is not enough evidence to accept or reject an individual’s inurance on other
grounds. Thus, as long as there is a need for more information, the need to determine
whether an individual eats unhealthy food (and appropriate risk scoring) will be
established.
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know”. Though any implementer will necessarily need to tread with care to determine

how far is far enough in determining intent, this first step is actually quite reasonable.

As mentioned before, if the cost of discovering whether or not Danny eats unhealthy

food is expensive (it may take considerable processing and time to interpret and

extract features and intents from images and free-form text), we likely will only

want to do the work to determine whether or not Danny eats unhealthy food if we

cannot prove with certainty that Danny is, or is not, eligible for insurance. Thus,

the connection between the general “lack of information” and the specific “need to

know” with respect to Danny’s eating habits is actually quite indicative of the need

for the level of inherent control that propositional reasoning o↵ers.

With all these rules in place, there remains only one component necessary to

actually properly rate risk: the mechanism to accumulate risk scores itself. Though

I have thus far demonstrated that some problems may be resolved through reliance

on the rule mechanism as described in Chapter 4, such partial propagator networks

are not the only networks that may be useful in solving problems. However, the

propagator network model permits a vast number of network constructions which may

be used to solve problems in ways that rules alone cannot accomplish. Accumulation

is one such “alternative” network structure.

Unlike the basic scoring mechanisms described above, accumulation is an example

of a complex operation that cannot be simply implemented by using rules alone, due

to the need to “undo” an accumulation when premises change. For example, while

an assumption of unknownness regarding whether Danny sky-dives contributes a risk

factor of 0.5 to overall accumulated risk, if, at a later date, he is found to indeed

engage in sky-diving, the contribution to the overall accumulated risk score must be

changed from 0.5 to 3, which necessarily will alter the overall risk score (such as by

increasing it from 3.5 to 5). Furthermore, the overall risk score must then reflect the

sources of information contributing the acceptance of Danny’s sky-diving which were

not previously present.

In order to implement accumulation, an alternative partial network may be con-

structed like that presented in Figure 6-6. The basic premise of the accumulator
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3.5 6.25p:+0 p:+

identity-value
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partial-value-1
(B)

partial-value-2
(B)

final-value
(D)

3.5

input-1

aggregation-
propagator

(C)

aggregation-
propagator

(C)

p:default-
value

p:default-
value

2.75

input-2

2.753.5 input-buffer-1 input-buffer-2

6.25#f

there-is-only-one-input
(E)

p:switch p:switch #t

there-are-only-two-inputs
(E)

Figure 6-6: A propagator network which accumulates two values by addition (p:+).
Partial values slowly accumulate until a p:switch connects a partial value (partial-
value-2) to the final value based on the assumption that there are no more inputs to
the accumulator.
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structure is that at any stage in the life of an accumulator, there is an implicit as-

sumption that all contributions to the value of the accumulator are known. Thus,

the basic network of an accumulator constructs a “final” partial accumulated value

(D) by chaining partially accumulated values (B) starting with an identity value (A)

to additional inputs to the accumulator by way of a known binary operator (such as

the p:+ addition operator) (C). This “final” partial accumulated value is then con-

nected to an output cell using through a “switch” propagator which only propagates

the “final” value to the output as long as the assumption that there are no more

contributions to the accumulator is true (E).

Figure 6-7 illustrates how the number of inputs to an accumulator may increase.

When a new contribution is identified, the chain of accumulator inputs may be ex-

tended by constructing additional propagators and cells and appending them to the

chain of partial accumulations. Following this, the assumption that all contributions

were known may be kicked out, disconnecting the old “final” partial accumulation

from the output cell. Then, the newly constructed “final” partial accumulation may

be attached to the output cell to e↵ectively update the value with the new contribu-

tion.

Figure 6-8 illustrates how removing contributions may be accomplished through

the use of the p:default-value propagator and input bu↵er cell which sit between

the contributing cell and the partially accumulated cell. The p:default-value prop-

agator e↵ectively provides a “default value” for an output cell whenever the primary

input (e.g. the contributing cell) contains no contribution whatsoever. Thus, when

a contribution is “removed”, one need only remove the support for the value in the

input cell. With no supported value in its primary input, the p:default-value prop-

agator will instead connect the alternate input (i.e. the identity cell) to the input

bu↵er cell used as input to the partial accumulation. As a result, only the identity

value supports that partial accumulation at that point so that the actual contribu-

tion to the accumulation at the newly unsupported partial accumulation is e↵ectively

eliminated thanks to the use of the identity value for the operation, such as adding 0

or multiplying by 1.
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3.5 3.5p:+0 p:+

identity-value
(A)

partial-value-1
(B)

partial-value-2
(B)

final-value
(D)
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input-1

aggregation-
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p:switch p:switch #t
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Figure 6-8: Removing a contribution from an input to a propagator-based accumu-
lator. Here, input-2 is removed (its value becomes *the-nothing*, depicted here
as null). This causes the p:default-value propagator it is connected to to instead
propagate the value from the identity cell (0) to the input of the partial-accumulation.
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We may, of course, simplify this partial network using a compound propagator,

named p:accumulator. This propagator e↵ectively handles accumulation and is in-

voked with five arguments. The first argument is a simple symbolic prefix used for

labelling and debugging. The second is the name of the binary operator used in ac-

cumulation (for example, p:+ or p:*) and the third argument is the identity value for

that operation. The fourth argument is the cell to which the output of the accumu-

lator will be connected and the fifth and final argument is a cell which will contain

the propagator which may be invoked to add new contributions to the accumulator.

With this propagator in hand, the accumulation of risk may be handled sim-

ply using the code in Figure 6-9, which simply constructs an accumulator when-

ever a request for accumulation is found and accepted ((please-accumulate ?type

?subject ?requestor)). Then, for every proposition representing an accumulator

contribution ((contribution ?type ?subject ?num ?reason)) which is believed

to be accepted, a cell representing the value of that contribution is created, the value

supported by the acceptance of that proposition. This value is then connected to

the accumulator propagator using the p:add-new! propagator, at which point its

contribution will be reflected in the output cell of the accumulator.

Finally, the output value of the accumulator is mapped to a proposition of the

form (accumulator ?type ?subject ?requestor ,accumulation), allowing other

propositional pattern-matching to operate and make use of the value of the accumu-

lation.

With such accumulation in hand, Aintno need only express a need to accumulate

risk, which may be done using rules and tests for risk thresholds, as in Figure 6-

10, in which the need to determine insurability establishes a need for accumulation

((please-accumulate risk ?subject ?company)), and checks whether a given ac-

cumulated risk ((accumulator risk ?subject ?company ?risk-accumulator)) is

below the acceptance threshold or above the rejection threshold before accepting or

rejecting on that basis.
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(rule ((r
(accepted
(a-prop ’(please-accumulate ?type ?subject ?requestor)))))
(let* ((name (symbol (pattern-value ?type)

":accumulator-of:"
(pattern-value ?subject)
":for:"
(pattern-value ?requestor)))

(contribution-counter (make-counter)))
(let-cells (accumulation p:add-new!)

(p:accumulator name p:+ 0 accumulation p:add-new!)
(rule ((c
(accepted
(a-prop ’(contribution ?type ?subject ?num ?reason)))))

(let* ((cname (symbol name ":contribution:" (contribution-counter)))
(contrib (make-named-cell cname)))

(p:switch c (pattern-value ?num) contrib)
(p:add-new! contrib)))

(accept (the-prop
‘(accumulator ?type ?subject ?requestor ,accumulation))

(list ’accumulator-result)
(list r)))))

Figure 6-9: Accumulation of values is only done when there is a need to do such accu-
mulation ((please-accumulate ?type ?subject ?requestor) is accepted). When
there is such a need, only accepted numeric contributions of the form (contribution
?type ?subject ?num ?reason) matching the request for accumulation are used.
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(rule ((req
(accepted
(a-prop
’(please-determine-if ?subject is-insurable-by ?company)))))
(accept (the-prop ’(please-accumulate risk ?subject ?company))
(list ’risk-evaluation)
(list req))
(rule ((result
(accepted
(a-prop
’(accumulator risk ?subject ?company ?risk-accumulator))))

(ath
(accepted
(a-prop ’(risk-accept-threshold ?company ?accept-threshold))))

(rth
(accepted
(a-prop ’(risk-reject-threshold ?company ?reject-threshold)))))

(let ((accumulated-risk-cell (pattern-value ?risk-accumulator))
(accept-threshold (pattern-value ?accept-threshold))
(reject-threshold (pattern-value ?reject-threshold)))

(p:> accept-threshold accumulated-risk-cell
(accepted (the-prop ’(?subject insurance-issued-by ?company))))

(p:> accumulated-risk-cell reject-threshold
(rejected (the-prop ’(?subject insurance-issued-by ?company))))

(p:and (e:<= accept-threshold accumulated-risk-cell)
(e:<= accumulated-risk-cell reject-threshold)
(accepted
(the-prop ’(?company needs-more-information ?subject)))))))

Figure 6-10: Only when there is a need to determine whether a potential cus-
tomer is insurable will the accumulation of risk be undertaken. More informa-
tion is needed to determine Danny’s insurability (accepted (the-prop ’(?company
needs-more-information ?subject))) if the risk is between the accept and reject
thresholds.
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6.4 The System in Operation

With the rule infrastructure and facts about Danny in place, we need only estab-

lish a need to determine Danny’s insurability as an accepted proposition ((true!

’(please-determine-if Danny is-insurable-by AINTNO) ’ian)), and the above

rules and propagator mechanisms will work to solve the problem as to whether or not

Danny is insurable.

Based on the need to determine insurability, the code in Figure 6-10 establishes

a need to accumulate risk. At this point, only the simple rule expressions like those

in Figure 6-3 will be active and establish contributions to risk based on Danny’s

engagement in risky hobbies as established by the beliefs established in Figure 6-2.

On their own, these facts are enough to deny Danny insurance, as noted in the fact

that the rejected state of (Danny insurance-issued-by AINTNO) is held as true. We

may, of course, inquire as to why this is the case using the explain function ((explain

(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 1)), the re-

sults of which are given in Figure 6-11. At this description level (0), we find that

the rejection of (danny insurance-issued-by aintno) is supported (has-value

#t) based on the fact that the accumulated value in (out) (= 5.15) is greater than

the rejection threshold (3). The explanation also explains that this accumulated

risk value is supported by the premises gathered from facebook, flicker, danny,

and risk:accumulator-of:danny:for:aintno:premise4 (i.e. the assumption that

there are no more contributions to risk).

We can, of course, ask for more detail by digging into a more detailed explanation

level (2), which gives the answer in Figure 6-12, demonstrating that contributions

to the risk came from the addition of the risks from rock-climbing, scuba-diving,

motorcycling, and sky-diving.

But what if Sally remembers that Facebook posts should not be used to support

rejections of insurability? In that case, we need only kick out the premises supported

by Facebook (retract! ’Facebook), which will drop the accumulated risk within

the bounds of issuance (risk < 2) and rejection (risk > 3) of insurance. In this range,
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((((rejected (danny insurance-issued-by aintno)))
has-value
#t
by
((>:p) (out) (3))
with-premises
facebook
flicker
danny
risk:accumulator-of:danny:for:aintno:premise4)

((out) has-value
5.15
by
((p:accumulator) (0))
with-premises
facebook
flicker
danny
risk:accumulator-of:danny:for:aintno:premise4))

Figure 6-11: A simple explanation, generated by the function call (explain
(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 1)

the system now accepts the need to look for more information to determine Danny’s

insurability ((?company needs-more-information ?subject)). As a result of the

acceptance of this fact, the system now may accept the need to prove whether or not

Danny eats unhealthy food (Figure 6-5), and as a result, will attempt to find proof

of whether Danny eats unhealthy food (Figure 6-4).

With such rules on unhealthy food now in hand, the system is again able to

reject Danny’s insurance application based on the fact that he eats unhealthy food

(specifically, he works at hals-hotdogs, a restaurant, implying that he eats their

food, hotdogs, which, according to the FDA, are unhealthy). This explanation can,

of course, be obtained using the explain function at a suitably deep explanation level

(2), as in Figure 6-13.
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((((rejected (danny insurance-issued-by aintno)))

has-value #t

by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))

with-premises facebook flicker danny

risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno)

has-value 5.15

by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:4)

(risk:accumulator-of:danny:for:aintno:contribution:3)

(risk:accumulator-of:danny:for:aintno:contribution:2)

(risk:accumulator-of:danny:for:aintno:contribution:1)

(risk:accumulator-of:danny:for:aintno:zero))

with-premises facebook flicker danny

risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno:contribution:4)

has-value .25

by ((switch:p)

((accepted (contribution risk danny .25 rockclimber)))

(.25))

with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))

has-value #t

by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))

with-premises danny)

(((unknown (danny engages-in rockclimbing)))

has-value #t

by (user)

with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:3)

has-value -.1

by ((switch:p)

((accepted (contribution risk danny -.1 scubadiver)))

(-.1))

with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))

has-value #t

by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))

with-premises danny)

(((rejected (danny engages-in scubadiving)))

has-value #t

by (user)

with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)

has-value 2.

by ((switch:p)

((accepted (contribution risk danny 2. motorcycler)))

(2.))

with-premises flicker)

(((accepted (contribution risk danny 2. motorcycler)))

has-value #t

by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))

with-premises flicker)

(((accepted (danny engages-in motorcycling)))

has-value #t

by (user)

with-premises flicker)

((risk:accumulator-of:danny:for:aintno:contribution:1)

has-value 3.

by ((switch:p)

((accepted (contribution risk danny 3. skydiver)))

(3.))

with-premises facebook)

(((accepted (contribution risk danny 3. skydiver)))

has-value #t

by ((((risk-estimate) (skydiving)))

((accepted (danny engages-in skydiving))))

with-premises facebook)

(((accepted (danny engages-in skydiving)))

has-value #t

by (user)

with-premises facebook)

((risk:accumulator-of:danny:for:aintno:zero) has-value 0))

Figure 6-12: Danny’s hobbies may be used as a basis to reject his insurance, a fact
which comes out of the explanation generated by the explain function, given here
and in Appendix A.
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((((rejected (danny insurance-issued-by aintno)))

has-value #t

by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))

with-premises nothing:1 flicker danny fda common-knowledge hal

parachutingassociation

risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno)

has-value 4.050000000000001

by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:6)

(risk:accumulator-of:danny:for:aintno:contribution:5)

(risk:accumulator-of:danny:for:aintno:contribution:4)

(risk:accumulator-of:danny:for:aintno:contribution:3)

(risk:accumulator-of:danny:for:aintno:contribution:2)

(risk:accumulator-of:danny:for:aintno:contribution:1)

(risk:accumulator-of:danny:for:aintno:zero))

with-premises

(hypothetical 460 nothing:1 in #[entity 461] bool)

flicker danny fda common-knowledge hal parachutingassociation

risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno:contribution:6)

has-value -.1

by ((switch:p)

((accepted (contribution risk danny -.1 skydiver)))

(-.1))

with-premises parachutingassociation)

(((accepted (contribution risk danny -.1 skydiver)))

has-value #t

by ((((risk-estimate) (skydiving)))

((rejected (danny engages-in skydiving))))

with-premises parachutingassociation)

(((rejected (danny engages-in skydiving)))

has-value #t

by (user)

with-premises parachutingassociation)

((risk:accumulator-of:danny:for:aintno:contribution:5)

has-value 2

by ((switch:p)

((accepted (contribution risk danny 2 eats-unhealthy-food)))

(2))

with-premises fda common-knowledge hal danny)

(((accepted (contribution risk danny 2 eats-unhealthy-food)))

has-value #t

by ((((risk-estimate) (unhealthy-food)))

((accepted (danny eats unhealthy-food))))

with-premises fda common-knowledge hal danny)

(((accepted (danny eats unhealthy-food)))

has-value #t

by ((((common-sense) (food)))

((& ((accepted (danny eats hotdogs)))

((accepted (hotdogs is unhealthy))))))

with-premises fda common-knowledge hal danny)

(((accepted (hotdogs is unhealthy)))

has-value #t

by (user)

with-premises fda)

(((accepted (danny eats hotdogs)))

has-value #t

by ((((eating-at) (restaurant)))

((& ((accepted (danny eats-at hals-hotdogs)))

((accepted (hals-hotdogs is-a restaurant)))

((accepted (hals-hotdogs primarily-serves hotdogs)))

((accepted (hotdogs is-a food))))))

with-premises common-knowledge hal danny)

(((accepted (hotdogs is-a food)))

has-value #t

by (user)

with-premises common-knowledge)

(((accepted (hals-hotdogs primarily-serves hotdogs)))

has-value #t

by (user)

with-premises hal)

(((accepted (danny eats-at hals-hotdogs)))

has-value #t

by ((((works-at) (restaurant)))

((& ((accepted (danny works-at hals-hotdogs)))

((accepted (hals-hotdogs is-a restaurant))))))

with-premises hal danny)

(((accepted (hals-hotdogs is-a restaurant)))

has-value #t

by (user)

with-premises hal)

(((accepted (danny works-at hals-hotdogs)))

has-value #t

by (user)

with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:4)

has-value .25

by ((switch:p)

((accepted (contribution risk danny .25 rockclimber)))

(.25))

with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))

has-value #t

by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))

with-premises danny)

(((unknown (danny engages-in rockclimbing)))

has-value #t

by (user)

with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:3)

has-value -.1

by ((switch:p)

((accepted (contribution risk danny -.1 scubadiver)))

(-.1))

with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))

has-value #t

by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))

with-premises danny)

(((rejected (danny engages-in scubadiving)))

has-value #t

by (user)

with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)

has-value 2.

by ((switch:p)

((accepted (contribution risk danny 2. motorcycler)))

(2.))

with-premises flicker)

(((accepted (contribution risk danny 2. motorcycler)))

has-value #t

by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))

with-premises flicker)

(((accepted (danny engages-in motorcycling)))

has-value #t

by (user)

with-premises flicker)

((risk:accumulator-of:danny:for:aintno:contribution:1)

has #(*the-nothing*))

((risk:accumulator-of:danny:for:aintno:zero) has-value 0))

Figure 6-13: Danny’s employment at Hal’s Hot Dogs may be used against him if
Aintno is unable to prove that he should be insured or not, a fact visible when using
the explain function. This text is also provided in Appendix A.
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Chapter 7

Beyond Propositions

Though I have demonstrated the viability of propositions in constructing and inte-

grating control with knowledge in problem solvers, it is necessarily di�cult to prove

that such propositional reasoning is viable for expressing all kinds of problem solving

strategies. Certainly the computational power of the underlying propagator networks

is equivalent to that of a universal Turing machine {This would be a bit of an extended

proof but it could be done... It’s not really appropriate to include here though}, but

mere ability to emulate any Turing-based problem solver does not necessarily mean

that propositional approaches are natural or appropriate to all problems.

The true flexibility and feasibility of propositional problem solving can only be

uncovered in the course of future work spent exploring and implementing problem

solvers to solve di↵erent kinds of problems. Such work will necessarily uncover any

weaknesses or flaws in the current system, whether they be based on flaws in current

implementations of the underlying propagator networks or fundamental incompati-

bilities of the propositional modality with certain kinds of problems. In the process

of developing the propositional problem solver system, however, I have identified a

number of directions for future work needed to better determine and improve propo-

sitional problem solving which I discuss in detail in the remainder of this chapter.
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7.1 Supporting Multiple Worldviews

A crucial assumption made in the implementation of propositions presented and de-

scribed in this paper is the assumption that each proposition is associated with one

set of the five belief states. That is, it is assumed that a belief state for a proposition

will only even be believed or disbelieved; there is to be no superposition of belief.

Within the context of the “agency” of a single problem solving process, this is not

necessarily a problem. In the examples provided in previous chapters, the inability

to superpose belief and disbelief is a non-issue, because the goal of each (partial)

problem solver was to resolve discordant beliefs in a way to draw an appropriate,

concrete conclusion.

A problem, however, arises when there is a need to reconcile or work with mul-

tiple beliefs simultaneously, such as when the beliefs of two distinct agents must be

coordinated. In such a situation it is unclear how two agents’ beliefs should be kept

separate. Because each cell contains a simple TMS which contains a single supported

truth value, it is impossible to interpret a single accepted cell’s value in the light of

both agents simultaneously. Certainly, one could maintain separate sets of premises

and evaluate the single cell in light of each premise set to obtain di↵erent truth values

associated with the beliefs of the same proposition, but such a system hardly allows

us to connect or synthesize the two beliefs in any meaningful fashion. Premise sets

are “external” to the propagator network and as the contents of cells in a propagator

network may only be evaluated with respect to one premise set at a time, there is no

way to properly depend on two (potentially conflicting) premise sets.

This leaves two viable possibilities for addressing this need to represent what

amounts to two distinct “world views.” We could choose to create additional be-

lief states associated with a cell each representing an agent and an associated basic

belief (e.g. “john accepts”, “john rejects”, “jane accepts”, “jane rejects”). Such a

mechanism would certainly allow for a meaningful grouping of all beliefs relating to

a single proposition within multiple world views, but it may complicate addressing

and naming of individual belief states associated with a world view when each name
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requires the knowledge of the agent who holds that state.

Alternately, we could represent each agent’s view of the proposition as a separate

proposition. This semantic “reification” of the proposition (e.g. (jane holds (jack

parent ben))) complicates instead the naming of a proposition, leaving the problem

of addressing the proposition itself unsolved. It is not immediately obvious which

approach is better, given that both approaches e↵ectively construct five additional

belief state cells for each agent holding beliefs relating to a single proposition. As a

result, regardless of the approach to representing beliefs in multiple world views with

respect to a single proposition, both scale linearly and are unwieldy in their naming

mechanisms.

Perhaps an ideal solution, however, would be to surface the underlying premise

sets as cells on their own and have the propagators which make use of them in any

computation (for example by propagating a value from an accepted belief state of

one proposition to another). Such a system has the advantage that each proposition

retains only five belief state cells, but comes with a distinct disadvantage: as propa-

gators necessarily do computation based on the contents of a cell, care must be taken

to always compute with respect to at least one set of premises. If this is not done,

beliefs may propagate to belief states in other propositions even though the relation-

ships between propositions themselves may di↵er between the worldviews. That is,

Jane and John may both accept the proposition (jack parent ben), but they may

instead disagree on the implication that such an acceptance necessarily implies that

one must accept (jack ancestor jim). If this is done blindly, one may find that

both Jane and John accept the latter proposition even though they may not both

accept the justification generated to get there.

7.2 Proof by Contradiction

Although the problem of accumulating values may be implemented using the under-

lying propagator architecture and connected to the propositional reasoning engine as

demonstrated in Chapter 6, other kinds of problem solving algorithms may not lend
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themselves easily to the implementation of the propagator paradigm as described in

this paper.

One such kind of problem solving is of particular interest to the propositional

paradigm. While Chapter 4 demonstrated the viability of rules as a mechanism

to connect the belief states of propositions to each other through implication rela-

tionships, other forms of proof exist in symbolic logic beyond that of modus ponens

implemented using rules. Unlike modus ponens, however, the principle of reductio ad

absurdum cannot be implemented using a simple propagator network where each cell

contains the reasons for supporting a particular belief state, as e↵ective application

of proving a contradiction requires creating a separate worldview in which the a belief

contrary to what is to be proven is held true. If we seek to prove that (jack parent

ben) is to be accepted, we must create a worldview which is identical to the current

one except that the proposition is believed to be rejected, and we must determine

whether such a rejection implies a contradiction.

Thus, proving a belief by contradiction depends not only on the ability to represent

two worldviews (the original worldview in which we wish to assert the proven belief,

as well as the hypothetical worldview in which we attempt to show a contradiction),

which is di�cult for reasons discussed above, but it also depends on the ability to

connect the worldviews. That is, the existence of a contradiction in the “contrary”

worldview that depends on the contrary belief necessarily creates an e↵ect in the

original worldview by supporting the belief that we wished to prove in the first place.

While such a system might indeed be possible through the reconstruction of the

propagator network implementation to permit multiple worldviews, reductio ad ab-

surdum is not a method of argumentation that is currently feasible with existing

propagator network infrastructure and thus suggests room for improvement and de-

velopment of the underlying propagator network substrate.

7.3 Contributions

{Need a better name to tie this all together}
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Despite these two flaws, the concept of propositional reasoning is compelling.

By modelling beliefs separately from the structure of the problem solver itself, it

is possible to inject complex control into problem solving and solve a wide variety

of problems using di↵erent mechanisms. By simply using knowledge of a solution,

for example, it is possible to e↵ectively control and limit the nature and extent of

problem solving. This was demonstrated most e↵ectively in the scenario presented

in the previous chapter, in which work was not done to prove whether or not Danny

ate unhealthy food until it was impossible to deny Danny’s insurance by any other

mechanism.

Such a mechanism permits intelligent selection of goals and simultaneously pro-

vides flexibility in problem solving (there are no constraints in how or in what order

Danny’s risk must be scored) while still permitting a level of control to e↵ectively

include hidden costs in the process of problem solving (for example, by restricting

the amount of work spent on Danny’s eating habits until the benefits outweighed the

costs of the work).

The nature of the underlying propagator network substrate of this system a↵ords

other valuable benefits, including the automatic addition of complex explanation

generation based on the structure through which information and beliefs flow. By

grounding such explanations in an integral part of a semantic-rich underlying pro-

gramming substrate, explanations are obtained at little cost and can be used to obtain

meaningful explanations at multiple levels of detail.

Although work is clearly still needed to establish the practical viability of propo-

sitional techniques in problem solving as a whole, including work on the problems

of supporting multiple worldviews and adding support for complex reasoning tech-

niques such as proofs by contradiction to the underlying propagator architecture,

propositional reasoning appears to be a functional approach to general-purpose prob-

lem solving solutions which may be useful in a decentralized, flexible world. {Better

tie this back to the intro}
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Appendix A

A Sample Session with

Propositional Reasoning

The example scenario given in Chapter 6 provided only a handful of examples of

how Danny’s insurance might be determined. In practice, the propositional system is

interactive through the standard read-eval-print-loop of MIT/Scheme. This appendix

contains an extended session and demonstrates explanation generation in the Aintno

scenario. Input is given on its own line, while expected output is given within multi-

line Scheme comments (beginning with #| and ending with |#).

89



;;; Ground facts about Danny

(true! ’(Danny engages-in skydiving) ’Facebook)

(true! ’(Danny engages-in motorcycling) ’Flicker)

(false! ’(Danny engages-in scubadiving) ’Danny)

(unknown! ’(Danny engages-in rockclimbing) ’Danny)

;;; His eating habits

(true! ’(hals-hotdogs is-a restaurant) ’Hal)

(true! ’(hals-hotdogs primarily-serves hotdogs) ’Hal)

(true! ’(hotdogs is-a food) ’common-knowledge)

(true! ’(hotdogs is unhealthy) ’FDA)

(true! ’(Danny works-at hals-hotdogs) ’Danny)

(true! ’(Danny likes hals-hotdogs) ’Danny)

;;; Ground facts about AINTNO

(true! ’(risk-accept-threshold AINTNO 2) ’aintno-1)

(true! ’(risk-reject-threshold AINTNO 3) ’aintno-2)

(length (db-alist-alist (content *database*)))
;Value: 19

;;; The problem

(true! ’(please-determine-if Danny is-insurable-by AINTNO) ’gjs-1)

(length (db-alist-alist (content *database*)))
;Value: 24

90



(cpp (explain
(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 1))

#|
((((rejected (danny insurance-issued-by aintno)))
has-value
#t
by
((>:p) (out) (3))
with-premises
facebook
flicker
danny
risk:accumulator-of:danny:for:aintno:premise4)

((out) has-value
5.15
by
((p:accumulator) (0))
with-premises
facebook
flicker
danny
risk:accumulator-of:danny:for:aintno:premise4))

|#

(cpp (explain
(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 2))

#|
((((rejected (danny insurance-issued-by aintno)))
has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises facebook flicker danny
risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno)
has-value 5.15
by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:4)
(risk:accumulator-of:danny:for:aintno:contribution:3)
(risk:accumulator-of:danny:for:aintno:contribution:2)
(risk:accumulator-of:danny:for:aintno:contribution:1)
(risk:accumulator-of:danny:for:aintno:zero))

with-premises facebook flicker danny
risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p) ((accepted (contribution risk danny .25 rockclimber))) (.25))
with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)
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(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 scubadiver))) (-.1))
with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p) ((accepted (contribution risk danny 2. motorcycler))) (2.))
with-premises flicker)

(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flicker)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flicker)

((risk:accumulator-of:danny:for:aintno:contribution:1)
has-value 3.
by ((switch:p) ((accepted (contribution risk danny 3. skydiver))) (3.))
with-premises facebook)

(((accepted (contribution risk danny 3. skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((accepted (danny engages-in skydiving))))
with-premises facebook)

(((accepted (danny engages-in skydiving)))
has-value #t
by (user)
with-premises facebook)

((risk:accumulator-of:danny:for:aintno:zero) has-value 0))
|#
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(cpp (explain
(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 3))

#|
((((rejected (danny insurance-issued-by aintno)))
has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises facebook flicker danny

risk:accumulator-of:danny:for:aintno:premise4)
((risk:accumulator-of:danny:for:aintno)
has-value 5.15
by ((switch:p) (risk:accumulator-of:danny:for:aintno:construction:4)

(risk:accumulator-of:danny:for:aintno:partial-sum:4))
with-premises facebook flicker danny

risk:accumulator-of:danny:for:aintno:premise4)
((risk:accumulator-of:danny:for:aintno:construction:4)
has-value #t
by (user)
with-premises risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno:partial-sum:4)
has-value 5.15
by ((+:p) (risk:accumulator-of:danny:for:aintno:partial-sum:3)
(risk:accumulator-of:danny:for:aintno:buffer:4))

with-premises danny flicker facebook)
((risk:accumulator-of:danny:for:aintno:partial-sum:3)
has-value 4.9
by ((+:p) (risk:accumulator-of:danny:for:aintno:partial-sum:2)
(risk:accumulator-of:danny:for:aintno:buffer:3))

with-premises danny flicker facebook)
((risk:accumulator-of:danny:for:aintno:partial-sum:2)
has-value 5.
by ((+:p) (risk:accumulator-of:danny:for:aintno:partial-sum:1)
(risk:accumulator-of:danny:for:aintno:buffer:2))

with-premises flicker facebook)
((risk:accumulator-of:danny:for:aintno:partial-sum:1)
has-value 3.
by ((+:p) (risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:buffer:1))

with-premises facebook)
((risk:accumulator-of:danny:for:aintno:buffer:1)
has-value 3.
by ((p:default-value)

(risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:contribution:1))

with-premises facebook)
((risk:accumulator-of:danny:for:aintno:contribution:1)
has-value 3.
by ((switch:p) ((accepted (contribution risk danny 3. skydiver))) (3.))
with-premises facebook)
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(((accepted (contribution risk danny 3. skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((accepted (danny engages-in skydiving))))
with-premises facebook)

(((accepted (danny engages-in skydiving)))
has-value #t
by (user)
with-premises facebook)

((risk:accumulator-of:danny:for:aintno:buffer:2)
has-value 2.
by ((p:default-value)

(risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:contribution:2))

with-premises flicker)
((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p) ((accepted (contribution risk danny 2. motorcycler))) (2.))
with-premises flicker)

(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flicker)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flicker)

((risk:accumulator-of:danny:for:aintno:buffer:3)
has-value -.1
by ((p:default-value)

(risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:contribution:3))

with-premises danny)
((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 scubadiver))) (-.1))
with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:buffer:4)
has-value .25
by ((p:default-value) (risk:accumulator-of:danny:for:aintno:zero)

(risk:accumulator-of:danny:for:aintno:contribution:4))
with-premises danny)

((risk:accumulator-of:danny:for:aintno:zero) has-value 0)
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((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p) ((accepted (contribution risk danny .25 rockclimber))) (.25))
with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny))

|#
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(retract! ’Facebook)

(length (db-alist-alist (content *database*)))
;Value: 32

;;; We have other knowledge!
(false! ’(Danny engages-in skydiving) ’ParachutingAssociation)

(length (db-alist-alist (content *database*)))
;Value: 33

;;; But Danny is still rejected, because of his eating habits.

(cpp (explain
(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 1))

#|
((((rejected (danny insurance-issued-by aintno)))
has-value #t
by ((>:p) (accumulation) (3))
with-premises nothing:1

flicker
danny
fda
common-knowledge
hal
parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((accumulation)
has-value 4.050000000000001
by ((p:accumulator) (0))
with-premises nothing:1

flicker
danny
fda
common-knowledge
hal
parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6))

|#
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(cpp (explain
(rejected (proposition ’(Danny insurance-issued-by AINTNO))) 2))

#|
((((rejected (danny insurance-issued-by aintno)))
has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises nothing:1 flicker danny fda common-knowledge hal

parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno)
has-value 4.050000000000001
by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:6)
(risk:accumulator-of:danny:for:aintno:contribution:5)
(risk:accumulator-of:danny:for:aintno:contribution:4)
(risk:accumulator-of:danny:for:aintno:contribution:3)
(risk:accumulator-of:danny:for:aintno:contribution:2)
(risk:accumulator-of:danny:for:aintno:contribution:1)
(risk:accumulator-of:danny:for:aintno:zero))

with-premises
(hypothetical 460 nothing:1 in #[entity 461] bool)
flicker danny fda common-knowledge hal parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno:contribution:6)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 skydiver))) (-.1))
with-premises parachutingassociation)

(((accepted (contribution risk danny -.1 skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((rejected (danny engages-in skydiving))))
with-premises parachutingassociation)

(((rejected (danny engages-in skydiving)))
has-value #t
by (user)
with-premises parachutingassociation)

((risk:accumulator-of:danny:for:aintno:contribution:5)
has-value 2
by ((switch:p) ((accepted (contribution risk danny 2 eats-unhealthy-food)))

(2))
with-premises fda common-knowledge hal danny)

(((accepted (contribution risk danny 2 eats-unhealthy-food)))
has-value #t
by ((((risk-estimate) (unhealthy-food)))

((accepted (danny eats unhealthy-food))))
with-premises fda common-knowledge hal danny)

(((accepted (danny eats unhealthy-food)))
has-value #t
by ((((common-sense) (food)))

((& ((accepted (danny eats hotdogs)))
((accepted (hotdogs is unhealthy))))))
with-premises fda common-knowledge hal danny)
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(((accepted (hotdogs is unhealthy)))
has-value #t
by (user)
with-premises fda)

(((accepted (danny eats hotdogs)))
has-value #t
by ((((eating-at) (restaurant)))

((& ((accepted (danny eats-at hals-hotdogs)))
((accepted (hals-hotdogs is-a restaurant)))
((accepted (hals-hotdogs primarily-serves hotdogs)))
((accepted (hotdogs is-a food))))))
with-premises common-knowledge hal danny)

(((accepted (hotdogs is-a food)))
has-value #t
by (user)
with-premises common-knowledge)

(((accepted (hals-hotdogs primarily-serves hotdogs)))
has-value #t
by (user)
with-premises hal)

(((accepted (danny eats-at hals-hotdogs)))
has-value #t
by ((((works-at) (restaurant)))

((& ((accepted (danny works-at hals-hotdogs)))
((accepted (hals-hotdogs is-a restaurant))))))
with-premises hal danny)

(((accepted (hals-hotdogs is-a restaurant)))
has-value #t
by (user)
with-premises hal)

(((accepted (danny works-at hals-hotdogs)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p) ((accepted (contribution risk danny .25 rockclimber))) (.25))
with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny)
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((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 scubadiver))) (-.1))
with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p) ((accepted (contribution risk danny 2. motorcycler))) (2.))
with-premises flicker)

(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flicker)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flicker)

((risk:accumulator-of:danny:for:aintno:contribution:1) has #(*the-nothing*))
((risk:accumulator-of:danny:for:aintno:zero) has-value 0))
|#
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