
Dynamic Application of Problem Solving Strategies:
Dependency-Based Flow Control

by

Ian Campbell Jacobi

B.S., Computer Science,
Rensselaer Polytechnic Institute (2008)

S.M., Computer Science and Engineering,
Massachusetts Institute of Technology (2010)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Engineer in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 30, 2013
Certified by. .

Gerald Jay Sussman
Panasonic Professor of Electrical Engineering

Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Dynamic Application of Problem Solving Strategies:

Dependency-Based Flow Control

by

Ian Campbell Jacobi

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2013, in partial fulfillment of the

requirements for the degree of
Engineer in Computer Science

Abstract

While humans may solve problems by applying any one of a number of different prob-
lem solving strategies, computerized problem solving is typically brittle, limited in the
number of available strategies and ways of combining them to solve a problem. In this
thesis, I present a method to flexibly select and combine problem solving strategies by
using a constraint-propagation network, informed by higher-order knowledge about
goals and what is known, to selectively control the activity of underlying problem
solvers. Knowledge within each problem solver as well as the constraint-propagation
network are represented as a network of explicit propositions, each described with
respect to five interrelated axes of concrete and abstract knowledge about each propo-
sition. Knowledge within each axis is supported by a set of dependencies that allow
for both the adjustment of belief based on modifying supports for solutions and the
production of justifications of that belief. I show that this method may be used to
solve a variety of real-world problems and provide meaningful justifications for so-
lutions to these problems, including decision-making based on numerical evaluation
of risk and the evaluation of whether or not a document may be legally sent to a
recipient in accordance with a policy controlling its dissemination.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic Professor of Electrical Engineering

3

4

Acknowledgments

I would like to acknowledge and thank the following individuals for their assistance
throughout the development of the work presented in this thesis:

My advisor and thesis supervisor, Gerry Sussman, for his invaluable assistance
and advice offered in the process of developing the ideas presented in this thesis.

Alexey Radul for developing the concept of propagator networks and assisting in
troubleshooting and revising the propagator network implementation upon which the
work in this thesis was based.

K. Krasnow Waterman for proofreading this paper and offering some interesting
legal insights on several of the concepts presented in the thesis.

Lalana Kagal for her assistance and advice in developing reasoning systems, the
lessons of which were integrated in part in the system proposed in this paper.

Sharon Paradesi for providing additional proofreading assistance and offering sug-
gestions of several pieces of related work.

My lab-mates and other members of the Decentralized Information Group not
named above for providing their assistance, criticisms, feedback, and proofreading
skills on my presentations of this work as it has evolved over the past five years.

Finally, I would like to acknowledge that funding for this work was provided in
part by Department of Homeland Security Grant award number N66001-12-C-0082
“Accountable Information Usage in Distributed Information Sharing Environments”;
National Science Foundation Computer Systems Research/Software and Hardware
Foundations Grant “Propagator-based Computing”, contract number CNS-1116294;
National Science Foundation Cybertrust Grant “Theory and Practice of Accountable
Systems”, contract number CNS-0831442; and a grant from Google, Inc.

5

6

Contents

1 Introduction 13

1.1 Defining Flexibility . 14

1.2 A Problem: Issuing Health Insurance 17

1.3 A Solution (and Related Work) . 19

1.4 Thesis Overview . 22

2 Propagator Networks 23

2.1 Propagators . 23

2.2 Cells . 24

2.3 An Example . 26

2.4 Handling Contradictions . 29

2.5 Truth Maintenance Systems and Backtracking 30

3 Five-Valued Propositions 33

3.1 Propositions . 33

3.2 Implementation . 35

3.3 Hypothetical Beliefs and Backtracking 37

4 Building Problem-Solving Strategies 41

4.1 A Simple Rule . 41

4.2 Knowing the Unknown . 44

4.3 Making Work Contingent . 48

4.4 Simplifying the Code . 51

7

4.5 Controlling for Unknownness . 52

5 Building Justifications 55

5.1 What is a Justification? . 56

5.2 The Suppes Formalism . 57

5.3 Building Justifications . 59

5.4 Simplifying Justifications . 62

6 Propositions in Practice 65

6.1 The Problem . 65

6.2 Bootstrapping the System: Propositions 66

6.3 Bootstrapping the System: Rules . 68

6.4 The System in Operation . 78

7 Beyond Propositions 85

7.1 Supporting Multiple Worldviews . 86

7.2 Proof by Contradiction . 88

7.3 Alternate Belief States . 88

7.4 Probability in Cells . 89

7.5 Contributions and Conclusions . 90

A A Sample Session with Propositional Reasoning 93

8

List of Figures

2-1 A propagator network which combines and converts the outputs of two

thermometers, converting between Fahrenheit and Celsius. 27

2-2 A propagator network merging the contents of cells. 28

3-1 The five values of a proposition . 36

4-1 A simple network of propositions connected by implication 43

4-2 Code to prove ancestry through parenthood 43

4-3 Code to prove ancestry through parenthood by way of a search 46

4-4 Code to prove ancestry transitively 47

4-5 Lazily attaching a rule using teh s:when propagator 49

4-6 Code to lazily prove ancestry through transitivity 50

4-7 A simple syntax for lazily proving ancestry through transitivity . . . 50

4-8 Controlling the search for ancestors only when such a search is needed 53

4-9 Code to control the search for ancestors only when a search is needed 54

5-1 A logical proof using Suppes’s formalism 58

5-2 The semantic structure of a complex propagator network 61

5-3 Recursive generation of a justification 63

5-4 Generation of a simple justification 64

6-1 Code for simplifications of the tell! function 68

6-2 Asserted beliefs for Danny’s risk calculation 69

6-3 Rules scoring insurance risk for sky-divers 70

6-4 Rules that help determine whether a person eats unhealthy food . . . 71

9

6-5 Conditioning the need to score risk from an unhealthy diet 72

6-6 A propagator-based accumulator . 74

6-7 Adding a new input to a propagator-based accumulator 76

6-8 Removing a contribution from a propagator-based accumulator 77

6-9 Code to accumulate value when there is such a need 79

6-10 Code to accumulate risk only when there is a need 80

6-11 A simple justification . 82

6-12 A more detailed justification for rejection 83

6-13 A justification for rejection after removing the Facebook dependency 84

10

List of Tables

1.1 Contributions to risk score based on personal behaviors 17

1.2 Rules for determining risk . 19

6.1 Contributions to risk score based on personal behaviors 66

6.2 Propositions which might be believed about Danny 67

11

12

Chapter 1

Introduction

What differentiates human intelligence from that of other animals? Although sci-

entists have proposed a number of different theories and differentiators in the past,

including tool use [20], self-recognition [13], and social intelligence [10], each has been

dismissed by later evidence of animals which exhibit behavior like that of humans.

One of the leading theories at present is the human ability to solve problems in a

abstract, “symbolic” manner [29]. Indeed, humans appear to use symbolic problem

solving skills in any number of different ways, including the use of logic in statistical

analysis based on the scientific method, as well as the application of probabilistic ap-

proaches to learning which have formed the foundation of many algorithms considered

to fall under the guise of “artificial intelligence” [25].

While the increased understanding of each of these problem solving mechanisms

has led to a greater understanding and appreciation of the role of symbolic manipu-

lation in human intelligence, less has been done to properly understand and harness

the control of mechanisms that allow humans to make use of any of these approaches

in a flexible manner, outside of work relating to Minsky’s theory of the Society of

Mind [17, 18]. If we are to actually claim we understand the basis of human intel-

ligence, we must also be able to discover the source of flexibility in human thought

which allows us to effectively and efficiently solve problems using any number of prob-

lem solving methods without any preconceived algorithms of how such control may

be implemented.

13

1.1 Defining Flexibility

If we are to discuss flexibility of human problem solving skills, we must better define

what exactly is meant by this term. Human problem solving appears to feature a

number of aspects which, while perhaps not entirely unique to humans, are features

which we see as integral to the ability to solve problems. Some of these attributes

include reactivity, goal-oriented behavior, synthesis of disparate attributes (such as

color and location), apparent optimizations for certain kinds of problems, resilience to

contradictory inputs, and the ability to evaluate and select from different strategies

using what appears to be a single mechanism of thought.

While reactive behavior is common to practically all living things (e.g. subcon-

scious reflexes), humans appear uniquely able to react not only to physical constraints

which manifest while solving a problem, but also to theoretical, symbolic constraints,

such as those presented in hypothetical situations and those which occur in abstract

conceptual reasoning (e.g. making reactive decisions about perceived social and finan-

cial situations). Indeed, the ability to combine, apply, and otherwise utilize abstract,

symbolic values and operations is viewed as such a fundamental component of human

thought that its development in the adolescent human psyche is viewed as a transition

between the final two developmental stages in the theory of cognitive development

proposed by Jean Piaget (concrete operational and formal operational) [4].

Such reactivity is particularly evident in humanity’s ability to engage in long-term

planning. Indeed, humans appear to be the only species capable of planning beyond

their lifetime and those of their heirs. When knowledge about specifics will necessarily

change over time, there is a need to adjust any strategies seeking extremely long-term

results to account for large-scale changes in the environment. Human attempts to

address or account for issues such as global warming, technological development, and

large-scale societal change are but some examples of such behavior. Although humans

often encounter practical difficulties in envisioning and planning on extremely long

time-frames, such limitations appear to be cultural in nature (e.g. a drive for short-

term profits), rather than inherent to human intelligence. Indeed, some social groups

14

have proven quite willing to solve problems on time-scales beyond many hundreds of

years [1].

Human problem-solving is not only reactive, it is also goal-oriented. On the most

basic level, the desire to solve a problem implies that there is a fundamental goal:

the solution of the problem. But goal-direction may also be observed in the ability of

humans to plan how such problems will be solved, typically by establishing sub-goals

which may be achieved on the way to solving the larger problem. Such management of

sub-goals appears to act at even a sub-conscious, fundamental level in human thought;

a neuroimaging study by Braver and Bongiolatti [2] has implicated the frontopolar

region of the prefrontal cortex of the human brain in managing subgoals associated

with primary goals in working memory tasks.

The ability to synthesize disparate data appears to be another unique feature

of symbolic thought. Research by Herver-Vazquez, et al has shown that humans

are capable of synthesizing information about geometric features and landmarks to

identify locations [9], an ability not observed in rats. Thus, if a problem solving

mechanism is to approach human capabilities, it must be able to synthesize arbitrary

features to derive solutions, lest such a mechanism be unable to solve the deceptively

simple task of locating an object using both geometric and landmark-based cues, such

as locating the Washington Monument in Washington, D.C. based on the fact that it

is “at the opposite end of the Reflecting Pool from the Lincoln Memorial.”

It is often argued that humans are “efficient” thinkers. Although this is rarely

well-supported in practice, as humans easily fall prey to the inefficiencies of classi-

cal NP-hard problems, there are indications that humans are uniquely positioned to

solve certain kinds of problems. Indeed, recent studies making use of functional mag-

netic resonance imaging and transcranial magnetic stimulation have begun to identify

different regions of the brain which appear to be relevant for social and emotional

reasoning [33, 30] as well as “creative” thought such as analogy and metaphor [26, 32].

It is similarly likely that a general-purpose, flexible problem solver must be able to

select from efficient, smaller problem solving components which are specialized at

solving parts of a larger problem.

15

Human intelligence is also notable for its ability to handle contradictory beliefs,

contrary to the tenets of classical logic, which necessarily imply that simultaneous

belief in two contradictory statements necessarily renders all statements true (i.e. ex

falso quodlibet). This suggests that human thought may not be founded in the realm

of classical logic. Instead, humans may be capable of thinking within a superset of

such logic.1

The flaws of classical logic with respect to non-contradiction are hardly universal

however, and other logics may yet prove to be the basis of thought. Modern logics,

such as Belnap’s four-valued logic [14], that take into account paraconsistency, in

which contradictions should not cause an “explosion” of conclusions, or logics that

adhere to dialetheism, in which contradictions may exist as facts, seem to embody

much more pragmatic modalities for man’s rational thought. The rational thinker

attempts to resolve observed contradictions by revising his beliefs, not by breaking

down.

Most important, however, is humanity’s ability to apply a wide variety of different

approaches to solving the same problem. For example, the Pythagorean theorem

may be demonstrated by way of any one of dozens of methods, including algebraic

solutions, geometric rearrangement, and even proofs based on dynamic systems (i.e.

physics) [15]. While the symbolic thought of a single human does appear to be

constrained to follow a single approach at any given time (i.e. humans have a difficult

time thinking about multiple unrelated ideas at the same time), not only are humans

free to apply different approaches based on personal judgments made while solving

a problem, but humans may even derive and learn new approaches to solve novel

problems which have yet to be encountered. These approaches may then be applied

in the future. Any system that attempts to achieve a modicum of intelligence must

be prepared to be flexible in its approaches to problem solving in these ways, or it is

unlikely that it will truly resemble the abilities that may be achieved by a human.

1The mere existence of human logicians suffices as demonstrative proof that classical logic may
be evaluated using the human mind.

16

Criteria Contribution
Customer eats healthy food2 -2
Customer eating habits are unknown -1
Customer eats unhealthy food +2
Customer is a skydiver +3
Customer being a skydiver is unknown +0.5
Customer is not a skydiver -0.1
Customer is a rock climber +2
Customer being a rock climber is unknown +0.25
Customer is not a rock climber -0.1
Customer is a scuba diver +1
Customer being a scuba diver is unknown +0.1
Customer is not a scuba diver -0.1
Customer rides a motorcycle +2
Customer riding motorcycles is unknown +0.2
Customer does not ride motorcycles -0.1

Table 1.1: Contributions to risk score based on personal behaviors

1.2 A Problem: Issuing Health Insurance

As an example of the flexibility of humans in solving problems, consider the following

scenario:

Sally is an insurance underwriter working for Aintno, a health insurance company.

As the entirety of the reforms of the Patient Protection and Affordable Care Act have

not yet been put into place as of 2013, it is still possible to reject applications for

individual health insurance policies. Sally’s job is to review the files of prospective

customers to determine whether or not they should be issued insurance.

When issuing insurance, Sally must determine Danny’s eligibility in accordance

with Aintno’s eligibility policies, which determine such based on a system which scores

the risk of insuring a prospective customer based on a number of different criteria.

For each criterion that an individual meets, their risk score is adjusted appropriately

(See Table 1.1). Once a final score has been calculated, it is compared with several

thresholds. If the risk score is less than the minimum risk score threshold of 2, Aintno

will issue an insurance policy to the customer. However, if the risk score is greater

than the maximum risk score threshold of 3, Aintno will refuse to issue insurance to

17

the customer. If the risk score is between 2 and 3, Aintno will attempt to do more

work to determine whether insurance should be issued.

When Sally arrives at her desk one morning, she finds that she has been given the

file of Danny, a young adult looking for health insurance. As a prospective customer,

Danny’s eligibility must be determined before insurance may be issued. If he is not

eligible, then Sally must note that insurance was denied, and, so as to be able to

defend such denial in legal proceedings, must note the reasons which lead to the

denial (i.e. the facts which led to the excessively high risk score).

Similarly, if he is eligible, she must finalize an offer to insure Danny. In this case,

she must still note the risk score and the sources of the risk, as the sources and amount

of risk are relevant to determine what Danny’s insurance premiums should be.

In order to determine Danny’s risk score, she starts up Aintno’s custom risk anal-

ysis program and begins to input the data from Danny’s file, including his Facebook

and Flickr social network profiles3, which were gleaned from an optional field which

had been filled in in Danny’s file. As she does, Aintno’s risk analysis program mines

the two profiles for useful information which may be used to determine Danny’s risk.

Initially, the program attempts to score Danny’s risk on the basis of criteria other

than his diet, as Aintno’s policy is to avoid making such determinations if at all

possible due to the perceived subjectivity and fluidity of customers’ diets. It identifies

Danny as high-risk, however, due to his engaging in motorcycling and skydiving.

Together with his inability to prove he is not a rock climber and his lack of SCUBA

diving experience, Danny has a total risk score of 5.15.

Sally prepares to issue a denial to Danny, but then remembers that, due to a law

recently passed in Danny’s home state, Aintno is not permitted to mine Facebook for

insurance purposes. She directs the program to remove all facts that depended on

Facebook. This drops his risk score to 2.15 (as the fact that he engages in skydiving

3Although the use of information from social networks has not been used in underwriting as in
this example, some insurers already use information from social networking sites in fraud cases [22],
and a recent study by Deloitte Consulting and British insurer Aviva PLC found that a predictive
model based on consumer-marketing data such as hobbies and TV-viewing habits was judged as
largely successful in comparison with traditional underwriting, finding that “the use of third-party
data was persuasive across the board in all cases” [27].

18

eats(subject , food) ∧ unhealthy(food) → eats(subject , unhealthy-food)
likes(subject , thing) ∧ is-a(thing , food) → eats(subject , thing)

likes(subject , place) ∧ is-a(place, restaurant) → eats-at(subject , restaurant)
works-at(subject , place) ∧ is-a(place, restaurant) → eats-at(subject , restaurant)
(eats-at(subject , place) ∧ is-a(place, restaurant)

∧ primarily-serves(place, thing)
∧ is-a(thing , food)) → eats(subject , thing)

Table 1.2: Rules for determining risk

was only found on his Facebook profile), and causes the system to do more work and

activate a set of rules regarding Danny’s eating habits.

As Danny works at Hal’s Hot Dogs (a hot dog restaurant), a number of pre-

programmed rules which assist in assessing and accumulating risk scores based on

eating habits (See Table 1.2) determine that Danny is a likely consumer of hot dogs,

an unhealthy food. As a result, Danny’s risk score is returned to an unacceptably high

4.05. Thus confident in Danny’s ineligibility, she finalizes the rejection of Danny’s

policy.

1.3 A Solution (and Related Work)

Certainly individual components of this problem could be solved using existing rule

systems, data mining tools and a simple score aggregation algorithm. But what would

it take to remove Sally from the equation altogether? Could we automate the process

of determining eligibility and eliminate the role of the human altogether?

A naïve approach to such automation would simply result in a domain-specific so-

lution by determining the requirements and rules surrounding Sally’s workflow. From

a low-level perspective, we may consider the act of receiving a request for analysis to

drive the process of reading and interpreting Danny’s file, which subsequently causes

work to be done to mine and analyze information connected through his Facebook

and Flickr profiles, not only to better inform about lifestyle choices Danny may not

have been asked about in his application, but also to determine whether Danny’s

application may contain missing or incorrect information.

19

Evidently, then, automation is possible, but we are left with two subtle issues in

accepting this naïve approach to problem solving:

1. Such a domain-specific solution is likely to be brittle and require careful re-

tooling as rules, regulations, and inputs change. For example, if Flickr increases

the cost (be it computational or financial) of accessing the data it provides,

the heuristics used to guide the analysis are likely to change. Rather than

querying Flickr for every application, Aintno might only wish to query Flickr

for additional details if other parts of Danny’s application suggests that he

might be lying on his application, but proof is lacking. How can we make this

solution flexible depending on changing inputs and rules?

2. While we have a method of producing a domain-specific solution correspond-

ing to a workflow to solve a particular problem, this still doesn’t address the

fundamental act of problem solving in and of itself. It captures nothing of the

flexible planning and thought which we associate with true intelligence, as work

is likely forced into a procedural rather than declarative mode. Is it possible

to generalize this problem-solving approach so that we rely on domain-specific

input knowledge rather than a domain-specific problem solver?

In short, such a domain-specific solution does not capture the true nature of human

intelligence. Much of the flexibility and power of the human mind is left behind during

the process of building the solution according to the constraints of the problem. The

fact that a human may calculate this risk in a number of innovative ways is lost when

an automated solution is constructed, as such automation ultimately implements only

one such method. As a result, naïve, brittle problem-solving mechanisms cannot be

reused and may find difficulty in integrating with other domains.

Instead, I propose a system in which knowledge is expressed in terms of orthogonal

axes of beliefs. These beliefs may be connected in such a way that control may be

made explicit through the expression of appropriate beliefs (e.g. a “need to support”

some belief may drive work to uncover proof which supports that belief). These

20

connections also allow these beliefs to propagate through a network of operators

which effect work so as to meet goals expressed as other beliefs.

In some respects, this interlinkage between goals, knowledge, and actions resembles

Marvin Minsky’s K-line theory [16], in which relevant knowledge, stored and orga-

nized hierarchically, may be used to configure perceptive units (P-agents) to create

partial “hallucinations” of perception to assist in achieving goals and solving prob-

lems. By synthesizing “missing” perceptions, Minsky argues that existing problems

are more readily aligned with previously encountered ones, allowing for the selection

of the mechanisms best suited to solving them.

Relevant to the work presented here is Minsky’s extension of the K-line theory

to include an additional “G-net” of goals which influence which knowledge is likely

to be relevant at a given time. Just as knowledge may influence perception through

the activation of K-lines, Minsky proposes that goals may influence the activity and

application of knowledge (and thus, indirectly, perception) through the connections

that exist within the net of goals as well as perceptions.

The problem solving strategy proposed here resembles K-line theory, and treats

goals, knowledge, and perceptions as independent beliefs which may be connected

by a network of computational propagators which propagate beliefs between various

statements of goals, knowledge, and perceptions. In this way, a goal which is estab-

lished to calculate Danny’s risk may establish a belief in another goal which expresses

a “need to know” what Danny’s eating habits are. This system also provides a mech-

anism for connecting these goals, knowledge, and perceptions to systems which do

practical work (e.g. reasoning, discovery mechanisms, or aggregation of values), and

as such moves beyond K-line theory to demonstrate the practicality of such a theory.

It is worth noting that the system presented in this thesis also owes a significant

debt to the work done by de Kleer, et al on the AMORD system [5]. In addition

to making use of truth maintenance systems to maintain dependencies and enable

backtracking in reasoning, the propositional model also allows for the expression of

rules and the assumption and retraction of various premises made possible by TMSs

as a whole, a concept inspired by the work done in AMORD to do likewise.

21

Unlike AMORD, however, the “belief propagation” system presents an alternative,

more general view of belief. Where AMORD implicitly assumes that a belief is a

positive “assertion” of truth, this thesis takes the position that a particular “fact”

or proposition may have a number of different beliefs associated with it, including

acceptance of the proposition (i.e. the affirmative belief that the proposition is true),

rejection of the proposition (i.e. the negative belief that the proposition is false), as

well as simple beliefs which express the presence or absence of knowledge regarding

the proposition entirely. As a result, the propositional system proposed here permits

a greater amount of control than AMORD does, due to the greater expressivity of

the propositional system.

1.4 Thesis Overview

This thesis seeks to outline the belief-propagation mechanism proposed above, which

achieves such flexibility in problem solving by modeling knowledge with respect to

support for a given belief. These models are built on top of the propagator net-

work model, described in Chapter 2, and the proposition model of knowledge is then

proposed in Chapter 3. Chapter 4 then illustrates how the propositional knowledge

model may be used to solve problems in a flexible manner. Chapter 5 explains how

the belief propagation mechanism may be used to construct meaningful explanations

for the results of such problem solving. Finally, Chapter 6 demonstrates an example

of the propositional knowledge model while Chapter 7 offers some directions for future

work.

22

Chapter 2

Propagator Networks

The flexible problem solving mechanism described in this thesis depends on the pow-

erful computational substrate called propagator networks, developed by Alexey Radul

and Gerald Jay Sussman [21]. This computational substrate provides a simple mech-

anism for maintaining and updating partial information structures so that partial

information about an attribute or value may be refined over time. In this chapter, a

short description of the technology is provided in this chapter so that the reader may

better understand the mechanism of the propositional system explained in subsequent

chapters.

2.1 Propagators

Propagator networks consist of a network of two kinds of elements. Propagators are

small computational units which do work on various inputs stored in single-storage

memories known as cells. Any propagator may do work based on data in zero, one, or

more cells, and may store output in one or more output cells. This work may range

from simple operations such as addition and subtraction to complex calculations and

algorithms. In principle, most complex operations are performed by networks of

simple propagators representing basic mathematical operators and “switches” in the

propagator network, which alternately connect one of several input cells to an output

cell.

23

Propagators serve much the same purpose as electronic components do in an

electrical circuit; the ways in which simple propagators are connected help to define

the contents of cells at any given point, much as electronic components will influence

the voltage and current at any given point in a circuit.

Propagators also resemble electronic components in another way: just as partial

circuit diagrams may be abstracted and reused as “compound circuits” (such as with

integrated circuits), partial propagator networks may be abstracted and reused as

“compound propagators”. As these compound propagators become active, they con-

struct the partial propagator network represented by the compound propagator, thus

permitting for recursion and the constrution of loops.

For example, a “factorial” propagator might expand into a network consisting of

a subtraction propagator to subtract 1 from the input, another factorial propagator

to calculate the factorial of one minus the input, a switch to determine whether that

factorial should become active (e.g. if the input is less than 1), and a multiplication

propagator which multiplies the output of the “inner” factorial propagator with the

input of the “outer” factorial propagator. Then, if the input is much greater than one,

the inner factorial propagator will be activated to calculate the factorial recursively.

2.2 Cells

The other component of a propagator network, the cell, acts as the glue of the prop-

agator network; it stores data which may be used by propagators to do computation.

The information stored in a cell may be updated at any time by a propagator which

sends an “update message” to that cell. This message contains any new information

which may be used to inform the contents of that cell by merging the contents of that

message with the data currently in the cell using an appropriate merge operation.

The merge operation used to combine the update message and the existing infor-

mation in a cell is selected based on the type of data stored in the cell and the type of

data provided in the update message. For example, if a cell stores a numeric interval

and receives another numeric interval in an update message, it may merge the update

24

by taking the intersection of the two intervals. In this way, the information stored in

the cell may be gradually refined by obtaining ever narrower estimated ranges of the

value of the cell.

When a propagator network is constructed, propagators may be registered as

neighbors of cells so that they may be alerted when the cell’s content changes. Once

a cell has finished merging its content with the content in the update message, those

neighboring propagators will be alerted and given an opportunity to do additional

work, typically by making use of the newly updated value of the cell. These alerted

propagators may then send updates to other cells. As a result, updates to the content

of a cell will effectively propagate across the network of propagators and cells.

As the numeric range example demonstrates, the ability to use merge operations

to gradually refine the information stored in cells means that propagator networks

readily lend themselves to the representation and manipulation of partial information.

Rather than representing complete knowledge about a value, the concept of partial

information means that, while the attribute or variable which is represented by the

partial information is fixed, the value of the attribute itself may be incomplete, and

extended as more information is known.

For example, in the numeric range example above, a cell might represent the

outside air temperature, even though the actual value of the cell is a range with lower

and upper bounds. In this sense, the inherent errors in measurement may be made

explicit, so that, rather than some complete, presumably unmeasurable, value, we

give a range that the actual temperature lies within. That is, by providing lower

and upper bounds on the temperature, we are giving partial information about the

temperature, rather than full information.

Cells which store partial information may, with appropriate merge operations,

build up the partial knowledge in a cell when an update is received, so as to ob-

tain a better, more informed, value. In the numerical range example above, range

intersection is an appropriate merge operation, as it may be used to refine multiple,

potentially equally broad, ranges to obtain a more precise answer than any one of the

“input ranges” on their own.

25

2.3 An Example

Consider a system which seeks to measure the local air temperature in Boston in

degrees Celsius using two thermometers. Like any practical measurement device,

these thermometers have an error range and are not guaranteed to measure the actual

temperature. These thermometers do not behave identically, so they may report

different temperature ranges. Given this fact, it is possible to obtain a more accurate

measurement of the temperature by considering the intersection of their error ranges.

In addition to their measurement flaw, these thermometers have one other practi-

cal flaw, in that they measure the temperature using different scales. One measures

the temperature in degrees Celsius, while the other measures in degrees Fahrenheit.

As a result, care must be taken to ensure that the measurements of the thermometer

which reads in Fahrenheit are converted to degrees Celsius.

Given this fact, we may consider solving for the temperature of the thermometers

in degrees Celsius using a simple propagator network, given in Figure 2-1-1. Here,

the thermometers act as propagators which update cells with their estimate of the

temperature range. When the Fahrenheit thermometer reports its temperature (as

in Figure 2-1-2), it sends an update to the Fahrenheit temperature cell, cell A. This

cell is then connected to a subtraction propagator, which will subtract 32 from the

contents of cell A and update the value in the output cell (B) with the newly calculated

intermediate value of the conversion (Figure 2-1-3). A second propagator is connected

to that intermediate cell B and will multiply that value by 5
9
, and use that value to

update the Celsius temperature in cell C (Figure 2-1-4).

Note that in all steps in Figure 2-1, the cells to which updates are sent simply

adopt the contents of the update message to be their new content. This is due to the

fact that the cells initially contain a null-like value, “nothing”. This null-like value is

the initial value of a cell, and represents a lack of any partial information about the

cell’s value whatsoever. Thus, since there is no partial information with which the

numeric range in the update data can be merged, the merge operation simply sets

the value of the cell with the initial, “more specific” partial value given in the update.

26

(1)

(2)

(3)

(4)

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[87,94]

[55,62][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[30.5,34.4][55,62][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

merge([87,94],null) =
[87,94]

merge([55,62],null) =
[55,62]

[55,62]

merge([30.5,34.4],null) =
[30.5,34.4]

[30.5,34.4]

Figure 2-1: A propagator network which combines and converts the outputs of two
thermometers, converting between Fahrenheit and Celsius. A temperature range
from thermometer 1, in degrees Fahrenheit, (2) is sent to a cell. This alerts a chain
of propagators responsible for converting the temperature range to Celsius (3, 4).

27

(1)

(2)

(3)

(4)

[30.5,33][55,59.4][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[30.5,33][55,59.4][87,91.4]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[30.5,34.4][55,62][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

[30,33]

[30.5,33][55,62][87,94]

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

merge([30,33],[30.5,34.4]) =
[30.5,33]

merge([55,59.4],[55,62]) =
[55,59.4]

merge([87,91.4],[87,94]) =
[87,91.4] [87,91.4]

[55,59.4]

Figure 2-2: Propagator networks merge the existing contents of cells with updates
received from propagators. An update in degrees Celsius from thermometer 2 (1) is
merged with existing knowledge of the temperature (2) and propagates to the output
cell containing the temperature in degrees Fahrenheit (3, 4).

28

However, when the second thermometer sends its temperature reading in degrees

Celsius as an update to cell C (Figure 2-2-1), the cell actually takes the intersection

of the current value in cell C and the value in the update and uses that value as

the new value of the cell (Figure 2-2-2). Propagators may, of course, be constructed

as reversible operations so that an update of an “output” may refine the “input”. In

Figures 2-2-3 and 2-2-4, the multiplication and subtraction propagators act reversibly

and and divide and add to update the temperature range in degrees Fahrenheit in

cell A. As a result, the Fahrenheit temperature range in cell A is also an intersection

of the two ranges.

2.4 Handling Contradictions

While Figure 2-2 demonstrates the value of refining numerical ranges by taking their

intersection, this raises a conundrum: what if the range in the update does not

intersect the range currently stored in the cell? Or more generally, what if an update

to a cell contains information which contradicts what is already stored in it?

When humans encounter a contradiction in practice, they typically desire to re-

solve the contradiction to obtain a new, reliable value from which additional work

may be derived. Such resolution may be done in many ways, and often results in

additional work being done to determine a resolved value. For example, if a tempera-

ture range contradicts an existing estimate, it may be appropriate to “kick out” older

contributions which may not accurately represent the current value of a changing tem-

perature. It might also be appropriate to determine whether a given thermometer is

broken or unusually inaccurate. If so, this may prompt a user to repair or remove the

faulty thermometer.

Because the ways in which a contradiction may be resolved may vary drastically

depending on the contents of the cell and the nature of a problem to be solved by the

network, implementations of propagator networks should be flexible in handling any

conflicts. The implementation of propagator networks in the MIT/Scheme program-

ming language, which has been used as the basis for the work in the remainder of

29

this thesis, normally raises an exception when a contradiction is encountered, causing

computation to halt so that humans may examine the nature of the contradiction

and resolve it in an appropriate manner.

Requiring human intervention is not a practical solution for most problems, how-

ever; it would be untenable to require human input to abort every “dead-end” in a

computation by removing inappropriate inputs, especially in the large search spaces

that lie at the core of many kinds of problems. While the underlying propagator

network mechanism may not directly support contradiction handling, the flexibility

of the “cell merge” operation permits basic contradiction handling to be performed as

part of the logic of such merge operations. The data structure known as a truth main-

tenance system, or TMS, has several features which make it particularly appropriate

for handling contradiction resolution in their merge operation.

2.5 Truth Maintenance Systems and Backtracking

Truth maintenance systems (TMSs) [6, 7] are data structures which allow for the

maintenance of a variable’s value based on the set of minimal supports or premises

for a given value. Although there are several kinds of truth maintenance systems,

assumption-based truth maintenance systems (ATMSs) are among the most useful

to track all possible premise-set/value pairs known to be valid for a given variable.

They may also be “queried” to retrieve the value that is best supported by a given set

of premises. Such values may be returned with the minimal set of premises known

to support the value, conveniently allowing for the identification of the subset of

premises most relevant to the specification of the returned value.

TMSs1 are appropriate contents for cells, as they may be merged by simply taking

the union of the set of value-support pairs in a cell and a set of such pairs in the update

message. The union of the sets of value-support pairs may then be treated and stored

1It is worth noting that not all of the powers I have mentioned in this section are available in
other kinds of truth maintenance systems (such as justification-based truth maintenance systems
or logical-based truth maintenance systems). As a result, whenever I mention truth maintenance
systems (TMSs) hereafter in this thesis, I refer to assumption-based truth maintenance systems.

30

as the new contents of the cell, so that smaller support sets for an otherwise identical

value may be propagated through neighboring propagators to their output cells.

By storing values as a function of a set of premises, TMSs may mark these sets as

“no-good” when contradictions are identified during the merge process (i.e. when two

value-support pairs with different values are supported by the set of premises) and

resolved through manipulation of the premise set at merge-time. Such premise-set

manipulation may change the effective value of a cell without actually introducing a

contradiction in the actual value stored in the cell; the contents of the TMS grow and

change independently from the set of believed premises, which are not subject to the

contradiction behavior of the underlying propagator network itself.

Manipulation of the premises during the cell merge operation introduces the abil-

ity to implement algorithms which require a backtracking search. When a particular

premise propagates to a cell and creates a contradiction in a TMS value when the

merge operation is applied, the TMS merge operation may effectively retract that

premise so that other premises may be tested for a suitable solution. In short, search-

ing for the solution to a problem using propagators becomes simply a matter of

searching for the set of premises which solves a problem without causing any contra-

dictions.

But while backtracking is but a necessary technique for problem solving, it is

not the whole story. Propagator networks and truth maintenance systems provide

a powerful mechanism which may be used to solve problems, they are still nothing

more than a computational platform, and they lack any features which might assist

in higher-order problem solving strategies. To actually attack problems and control

problem solving based on needs, desires, or beliefs, we need a way to represent these

needs, desires, and beliefs beyond the simplistic value maintenance of a TMS. For

that, we must turn to the idea of the proposition.

31

32

Chapter 3

Five-Valued Propositions

Controlling problem solving systems requires representations of both those beliefs

that act as input to the problem solvers and those beliefs which may be used to

control the problem solving itself. While the facts about Danny’s hobbies may be

sufficient to determine that he should not be granted insurance coverage, in practice,

it is necessary to be able to express and recognized the need for this determination

before it may happen. I have represented both the these needs and facts used as

input for problem solving in the form of propositions.

3.1 Propositions

A proposition is any statement which may be believed to be true or false. Propositions

differ from traditional logical statements in so far as they have no inherent truth or

falsehood in and of themselves. The existence of a proposition does not imply that the

proposition is true; propositions represent merely the concept of a statement without

any associated belief. To represent the nature of belief in a particular proposition,

each proposition is considered in terms of five different axes of belief: acceptance,

rejection, contradiction, knowledge, and ignorance.

The first two axes, acceptance and rejection, correspond to belief in the truth

and falsehood of the proposition, respectively. That is, a proposition is accepted if

it is believed to be true, while a proposition is rejected if it is believed false. Note

33

that truth and falsehood are independent of one another! It is quite possible for a

proposition to be both accepted and rejected (albeit temporarily), or to be neither

accepted nor rejected. By separating these two concepts as two distinct axes of belief

facilitates the expression of complex combinations of the support for and against a

particular proposition which may be evaluated differently in different contexts.

The remaining beliefs may be expressed in reference to acceptance and rejection.

Acceptance and rejection may be considered together to determine whether there is a

contradiction in beliefs. Such a contradiction may force problem solvers to backtrack

by removing certain assumptions that may have led to such contradictory beliefs.

Where the contradictory state of belief is the conjunction of acceptedness and

rejectedness, knowledge (or knownness) is the disjunction of acceptance and rejection.

A proposition is known if there is support for the proposition to be either accepted

or rejected. Similarly, a proposition may be unknown entirely (i.e. the system may

be ignorant of any knowledge regarding the proposition) if there is no support for it

being either accepted or rejected.

This alternate metric of ignorance is what provides for flexibility and control in

problem solving; it is possible to use a lack of knownness to determine when work

should be done to determine a solution. Often, once a proposition is believed to

be true or false, it is unnecessary to expend additional effort to uncover additional

support. For example, in the Aintno example, there is no need to calculate a com-

plete risk score for insurance purposes; once sufficient evidence has been gathered to

determine that insurance should be denied, the work performed to acquire additional

evidence for denial is unnecessary, as the relevant determination (whether the claim

should be accepted or rejected) is already made. (But this does not mean that work

cannot be done later if the evidence changes!)

What is important for all of these facets of knowledge and belief is that each

state of belief is only loosely connected to the others. Excepting the basic logical

relationships (e.g. simultaneous acceptance and rejection is contradictory, and a

proposition cannot be both known and unknown), support for each belief state is

independent and can be used to drive problem solving separately from belief in any

34

of the other belief states. As a result, each belief state may drive problem solving in

a different manner appropriate to the problem. If the problem requires it, ignorance

may be used to control when work is done to prove acceptance or rejection, but this is

not a requirement. Similarly, the belief in the rejection of a given proposition may be

used to drive computation to disprove such rejection (e.g. if there is a strong desire

to prove acceptance through contradiction).

3.2 Implementation

The evaluation of a proposition with respect to five values is an important foundation

of expressing belief, but how are we to actually represent this knowledge and its

connections to other beliefs? If we are to properly link propositions so that their beliefs

influence each other and so that computation and problem solving is contingent on the

nature of belief, we may wish to construct a network of propositions using propagator

networks, so that different states of belief in a proposition are able to influence and

modulate beliefs in other propositions. In this way we may cause computation to

occur.

This use of the propagator architecture for “belief propagation” bears many sim-

ilarities to constraint propagation systems, first described by David Waltz [31]. In

particular, the relationships between beliefs which are expressed with respect to state-

ments may be considered edges which constrain the beliefs on either end of the rela-

tionship. For example, a rule A→ B may be represented by a connection between an

affirmative belief in A and an affirmative belief in B, as well as a second connection

between a negative belief in B and a negative belief in A.

While combining constraint propagation and logical programs is admittedly not a

novel idea [12], the propositional architecture exposes program control structures and

integrates them into the system of constraints. Rather than simply delegating and

expressing logical relationships as constraints themselves, this architecture allows for

the amount of work done to “prove” a logical statement to itself be constrained on

the basis of belief in other statements.

35

∧∨~ ContradictionUnknown Known

Rejected

Accepted

Figure 3-1: A proposition may be described with respect to five values connected in
a propagator network of logical operations. Each circle represents a “cell” containing
the data in support (or opposition) of that particular belief state, and the currently
supported value will propagate its dependencies to related belief states as needed
based on the nature of belief.

For example, it should be possible to condition the “acceptance” of a need to do

research on our “ignorance” of a proposition for which we would like to have knowledge.

That is, if some proposition is unknown, it should translate to an “acceptance” of a

second proposition representing the need to know the first, unknown, proposition.

Likewise, as the first proposition becomes known, the second proposition, the need

to know, should become rejected.

Given all this, when mapping the propositional model to a propagator model, it

is sensible to map the individual “beliefs” to cells. The “rules” which relate beliefs

may be considered propagators which connect belief cells and combine belief states

to generate another.

Given the basic relationships between belief states described previously, we can

model a single proposition as a collection of five cells with logical propagators con-

necting them, as in Figure 3-1. Of special note in this particular model is that the

contradiction cell is automatically populated with a value of false. This captures the

implicit assumption that no proposition may be simultaneously accepted and rejected

(it may, of course, be simultaneously not accepted and not rejected). Furthermore,

36

these propagators may be reversible (unlike typical logical circuits which distinguish

logical inputs from logical outputs) so the false contradictory state will not only

support the automated conclusion of accepted = ¬rejected, but it may also assist

in forcing backtracking to occur when there is support for a proposition to be both

accepted and rejected (as will be described later in Section 3.3).

3.3 Hypothetical Beliefs and Backtracking

As mentioned in Section 2.5, we gain additional expressive power if we choose to store

a truth maintenance system as the contents of each belief cell. Though any given belief

cell will evaluate to a given true or false value depending on whether our belief in

the proposition is in accordance with the belief associated with the cell, if a truth

maintenance system is utilized, we may modify our beliefs by simply modifying the

set of premises which we hold to be true. Such a feature also permits backtracking

by removing premises, which I discuss in more detail here by focusing on the concept

of the hypothetical premise.

If we desire to model certain problem solving approaches, we must be able to

adopt premises by supposition, whether because information needed to prove or solve

a problem is incomplete, or because the supposition is itself used in the process of

proving the opposite belief (i.e. proof by contradiction). These hypothetical premises

are similar to other “concrete” premises which might exist in the premise set (those

which might be founded upon observations, measurements, or other external sources

for belief), but hypothetical premises are distinguished by a more transient, context-

specific nature.

Hypothetical premises rarely support more than one independent belief directly.

Additional beliefs may depend on a hypothetical premise in so far as they depend

on the acceptance or rejection of another proposition, but they generally are not

supported directly. In contrast, concrete premises may support multiple beliefs di-

rectly (e.g. Danny’s Facebook interests may serve as a single premise which not only

supports the belief that he is a sky-diver, but also the belief that he is a motorcyclist.)

37

More important, however, is that, unlike concrete premises, hypothetical premises

are generally designed to be retracted as additional evidence supports an alternate

position. For example, if we assume that Danny is a non-smoker for the sake of

determining his insurance rates, and we later encounter evidence that, in fact, Danny

actually smokes, it is desirable to reject our previous assumption that he was a non-

smoker and re-determine only those beliefs which were premised on that hypothetical

belief. Thus, we would like to automatically kick out the assumption based on the

fact that the presence of other, more concrete premises create a contradiction.

Another example of the relative transience of the hypothetical can be found in the

argumentation form reductio ad absurdum, which assumes that, if the denial of some

statement is assumed and a contradiction is encountered, said assumption may be

dismissed in favor of a “proof by contradiction” of the contrary. That is, a particular

proposition may be believed to be rejected on the basis of a hypothetical premise

and, should that premise lead to a contradiction, the premise may be kicked out

and acceptance of that same proposition may be supported instead, based on the

support which led to the identified contradiction. For example, Aintno might prove

that Danny is a non-smoker by contradiction as follows:

1. Assume Danny is a smoker.

(Add a hypothetical premise supporting smoker(danny))

2. All smokers have chronic obstructive pulmonary disease (COPD).1

(∀x.smoker(x)→ has-copd(x))

3. Therefore, Danny must have COPD.

(has-copd(danny))

4. Individuals with COPD have a FEV1/FVC ratio2 of less than 70%.3.

(∀x.has-copd(x)→ FEV1

FVC
(x) < 70%)

1This is not actually true, but is assumed for simplicity.
2The FEV1/FVC ratio is the ratio of the volume of air expelled in the first second of a forced

breath over the maximum volume of air that can be expelled
3According to standards set by the National Institute for Clinical Excellence [19]

38

5. Therefore, Danny must have an FEV1/FVC ratio of less than 70%.

(FEV1

FVC
(danny) < 70%)

6. In fact, Danny has an FEV1/FVC ratio of 92%.

(FEV1

FVC
(danny) = 92%)

7. Such a fact contradicts the prior conclusion about Danny’s FEV1/FVC ratio.

(92% 6< 70%)

8. Due to this contradiction, our initial assumption (that Danny is a smoker) must

be incorrect, and we may instead support the opposite.

(¬smoker(danny))

In the propagator network model, hypothetical premises may be modeled as

premises in the TMS premise set which are specially marked such that they may

be automatically kicked out and removed from the system when a contradiction is

detected. In effect, the merge operation for truth maintenance systems will preferen-

tially remove hypothetical premises if a contradiction is encountered when merging.

New beliefs are then recalculated based on the removed premise.

This principle explains why the contradictory cell is fixed to false: it causes a

truth value for acceptance to be negated for the rejected belief (so that an accepted

proposition is not also rejected, and a rejected proposition is not also accepted).

Then, when support arrives to support the contrary belief, a contradiction will be

encountered in the truth maintenance system of the accepted or rejected cell, forcing

backtracking to occur.

39

40

Chapter 4

Building Problem-Solving Strategies

With propagators as the underlying computational model of propositions, it remains

to be shown how these propositions may be connected to properly solve problems. As

stated in the previous chapter, working with multiple propositions requires the simple

extension of the “belief propagation” model to operate between multiple propositions.

In this chapter, we demonstrate the use of such a model by focusing on a specific

problem, proving the ancestry of a child, using propositions.

4.1 A Simple Rule

Consider the following simple problem: Joe is Mary’s father, and Howie is Mary’s

son. Howie also has a son named Jeff with his wife Jane. Is Joe an ancestor of Jeff?

To a human, this problem is easy to solve given the assumptions that a parent is

an ancestor of their child (i.e. ∀a, b.parent(a, b) → ancestor(a, b)) and that ancestry

is transitive (i.e. ∀a, b, c.ancestor(a, b) ∧ ancestor(b, c) → ancestor(a, c)). In effect,

we may use a simple pair of rules to draw conclusions about an individual’s ancestry

from a collection of parent-child relationships.

If the propositional model of reasoning is general enough to represent all methods

of problem solving so as to integrate them with control, it stands to reason that

it should be possible to model any one mechanism for solving problems, such as the

application of rules, using propositions. The evaluation of a rule has two components:

41

1. A proposition matching the pattern of the antecedent of a rule must be identified.

If we consider all propositions to be abstractly represented as n-ary predicates,

then we must be able to discover those specific predicates which match the

pattern of the antecedent of the rule such that any variables in the antecedent

may be filled by atoms in the specific matching propositional predicates.

Given a set of variable bindings which fix the values of variables that may be

present in the antecedent, the set of all proposition-environment pairs must be

found such that the proposition matches the antecedent pattern in arity, and

all concrete atoms and “bound” variables are the same. The environment of a

given pair then consists of the union of the input variable bindings and the new

bindings derived from the alignment of the remaining “unbound” variables in

the antecedent pattern with the values in the matching proposition.

For example, if we take the above rule ∀a, b.parent(a, b) → ancestor(a, b) to

start with, we would need to find some proposition which may be matched with

the pattern parent(a, b), such as parent(howie, jeff), which corresponds to the

new set of variable bindings {a = howie, b = jeff}.

2. We must connect the relevant belief in any matching proposition to belief in

its consequent (as evaluated in the environment created by the matching the

antecedent). In short, we must create an instance of the rule by binding any

variables in the rule to the corresponding terms in the matching proposition.

Since we have matched parent(a, b) with parent(howie, jeff), we have obtained

the relevant bindings a = howie and b = jeff. Thus, we may consider a specific

instance of the parent-ancestor rule parent(howie, jeff)→ ancestor(howie, jeff).

Given the nature of this rule, there is necessarily a connection between the

acceptance of the former proposition of parenthood and acceptance of the latter

proposition of ancestry. As a result, we must connect the two belief cells of the

propositions such that an affirmative (true) belief in accepting the proposition

parent(howie, jeff) will propagate, with its set of premises to the acceptance of

the proposition ancestor(howie, jeff), as depicted in Figure 4-1.

42

Cont.U. K.

R.

A.

Cont.U. K.

R.

A.

parent(howie, jeff).

ancestor(howie, jeff).

implies

Figure 4-1: A simple network of propositions which propagates the belief in the
acceptance of parent(howie, jeff) along with its dependencies to the acceptance of
ancestor(howie, jeff). The “implies” propagator ensures that this belief is properly
propagated without modification and merged with the contents of the output cell.

(define (prove-ancestry-by-parenthood a b)
(let ((parent-proposition (proposition `(parent ,a ,b)))

(ancestor-proposition (proposition `(ancestor ,a ,b))))
(accept ancestor-proposition

(list 'prove-ancestry-by-parenthood a b)
(list (accepted parent-proposition)))))

Figure 4-2: Proving ancestry through parenthood. (ancestor a b) is accepted
contingent on (parent a b) being accepted, by way of the “prove-ancestry-by-
parenthood” rule.

43

We might represent such a “parenthood” rule using MIT/Scheme code like that of

Figure 4-2. In the function prove-ancestry-by-parenthood, two propositions are

retrieved: parent-proposition (i.e. (parent a b)), and ancestor-proposition

(i.e. (ancestor a b)). With these two propositions in hand, the accept function

states that ancestor-proposition will be believed to be accepted, as informed by

(i.e. caused by) (list ’prove-ancestry-by-parenthood a b). That is, we will

potentially accept (ancestor a b) by way of the fact that we attempted to prove

ancestry through parenthood (with the specified arguments a and b).

This acceptance is not a foregone conclusion, however; the accept function also

states, through its third argument, that this acceptance is based on the acceptance

of parent-proposition. While we may believe (ancestor a b) to be accepted for

any number of reasons, we can only believe it is accepted due to parenthood if we

also believe that we accept (parent a b).

4.2 Knowing the Unknown

While the above example is perfectly acceptable should we know a and b, what if we

do not? As stated above, the rule ∀a, b.parent(a, b)→ ancestor(a, b) does not require

us to know a and b. Indeed, it is true for all a and b. Would it not be better to be

aggressive and proactively find parents, so as to prove ancestry without having to be

told which ones we are looking for?

There are several problems which must be surmounted with such an approach. The

most obvious difficulty is that of finding all such propositions that match (parent

a b). While we can certainly use efficient database storage and indexing algorithms

to find all such (parent a b) that exist when we are given the rule, we must also

be aware that it is very unlikely that we know all parenthood relationships at that

particular point in time. Furthermore, if a system is intelligent enough to know the

generic existence of parents (in short, parent(b, c) → ∃a.parent(a, b)), then a system

may easily get lost simply proving the existence of parents ad infinitum rather than

discovering a relevant ancestry relationship.

44

Even lacking such a general rule, from a pragmatic standpoint it is also quite

possible that we may not know about certain (parent a b) relationships at a given

time, due simply to their current “irrelevance.” In other words, at any given point

there are unknown unknowns ; not only do we not know whether we accept or reject

some arbitrary (parent a b), but there are (parent a b) propositions of which we

are not even remotely aware!

Thus, when making such a pattern matcher, we must take care that it is lazy. Any

attempt to prove ancestry through the existence of a parenthood relationship must

be ready to be acted on at any time, as new parenthood relationships are introduced

and believed to be true. That is, we must be prepared to make the connections

between propositions asynchronously, by making such connections in callbacks which

are invoked whenever such a statement is generated. Thus, we elaborate the code

as in Figure 4-3, which pushes the connection of the “acceptance” belief cells into

the function accept-ancestor-by-parenthood. This function may be called when

a matching proposition is found.

Note that here we replace the instantiation of a proposition (parent a b) with

the find-proposition-matching function. This function searches for propositions

matching the pattern (parent ?a ?b), where the question marks denote named vari-

ables a and b. Upon finding any such proposition, accept-ancestor-by-parenthood

is called, with a first argument containing the matching proposition, and a second

argument containing a mapping of the variable names to the values resulting from

matching the pattern with the proposition.

For example, given the proposition (parent howie jeff), the parent-proposition

variable would contain the proposition itself, while the contents of the environment

variable could be used to determine that the variable ?a would be bound to howie

and the variable ?b would be bound to jeff.

These environmental bindings are used in instantiate-proposition, in which

they are substituted for the ?a and ?b variables in the pattern (ancestor ?a ?b)

to instantiate the proposition (ancestor howie jeff). Then, the acceptance of

(parent howie jeff) is connected to the acceptance of (ancestor howie jeff)

45

;; This function is called with a proposition matching the pattern
;; (parent ?a ?b) and an environment that contains the values that
;; matched the pattern variables ?a and ?b. It then accepts the
;; corresponding (ancestor ?a ?b) proposition contingent on acceptance
;; of the parent proposition.
(define (accept-ancestor-by-parenthood

parent-proposition environment)

;; In order to accept the corresponding ancestry proposition
;; (ancestor ?a ?b) we create the proposition by using the
;; environment to fill in ?a and ?b...
(let ((ancestor-proposition

(instantiate-proposition '(ancestor ?a ?b) environment)))

;; We then accept ancestor-proposition based on ?a being the
;; parent of ?b, so long as we accept the proposition
;; (parent ?a ?b)
(accept ancestor-proposition

(list 'prove-ancestry-by-parenthood
(get-binding '?a environment) ; Get value of ?a
(get-binding '?b environment)) ; Get value of ?b

(list (accepted parent-proposition)))))))

;; Find propositions matching (parent ?a ?b) and call
;; accept-ancestor-by-parenthood for each such proposition.
(define (prove-ancestry-by-parenthood)

(find-proposition-matching '(parent ?a ?b) '()
accept-ancestor-by-parenthood))

Figure 4-3: Proving ancestry through parenthood generally. For every (parent ?a
?b) that is known, (ancestor ?a ?b) is accepted contingent on that (parent ?a
?b) being accepted, by way of the “prove-ancestry-by-parenthood” rule. Note the
introduction of the environment variable which contains the variable bindings to a
and b.

46

(define (prove-ancestry-by-parenthood)
(find-proposition-matching '(ancestor ?a ?b) '()

(lambda (prop-1 environment)
(find-proposition-matching '(ancestor ?b ?c) environment

(lambda (prop-2 environment)
(let ((ancestor-proposition (instantiate-proposition

'(ancestor ?a ?c)
environment)))

(accept ancestor-proposition
(list 'prove-ancestry-transitively

(get-binding '?a environment)
(get-binding '?b environment)
(get-binding '?c environment))

(list (accepted prop-1)
(accepted prop-2)))))))))

Figure 4-4: Proving ancestry through transitivity. For every (ancestor ?a ?b) and
(ancestor ?b ?c) that is known, (ancestor ?a ?c) is accepted contingent on those
two previous ancestor relationships being accepted, by way of the “prove-ancestry-
transitively” rule. Note how the environment variable is carried as an argument to
the nested find-proposition-matching function, and how it implicitly carries the
bindings of the named variable a through to the inner lambda in which the proposition
(ancestor ?a ?c) is instantiated.

as in Figure 4-2. Similarly, the get-binding function must be used to resolve the

bindings to ?a and ?b. In this way, the explanation of the method used to conclude

acceptance may be constructed.

The observant reader will note that the find-proposition-matching function

takes an empty list as its second argument. A second argument is helpful when mul-

tiple patterns are chained together, as in the ancestor-chaining rule implemented in

Figure 4-4. As the variable ?bmust be the same value in both (ancestor ?a ?b) and

(ancestor ?b ?c) in order to prove ancestry through transitivity, the environmental

bindings created by matching the former must be passed to the latter so as to par-

tially instantiate the pattern (ancestor ?b ?c) with the known value of ?b. Thus,

the second argument acts as an environment in which to evaluate the pattern before

performing a search, and the empty list merely denotes an empty initial environment

containing no variable bindings.

47

4.3 Making Work Contingent

So far, we have worked under the assumption that the mere existence of a proposition,

regardless of our belief in it, is justification enough to connect any possible acceptance

of that proposition with the consequent proposition of the rule. This has a distinct

downside; we will necessarily make such a connection for all propositions that match

the specified pattern, even though many of these may never be accepted (e.g. if

they may be rejected in the future rather than accepted). If, for example, our simple

ancestor problem solver is given every potential parent-child relationship in the United

States for a child under the age of 18, this would mean that our problem solver would

need to build nearly 75 million minors × 300 million citizens = 2.25× 1016 ancestor

relationships [11]. This is extremely wasteful, given that only about 150 million

of those relationships would ever be accepted, as a child has exactly two biological

parents!

It would be far more reasonable to make any problem solver’s work contingent,

not on the mere existence of some proposition, but on the nature of our belief in

it in the first place! Rather than blindly matching every proposition (parent ?a

?b), which would result in doing far more work than our original rule, should we

not preferentially connect only those parent propositions which we already accept?

Should we not control our problem solving based on what we believe?

If so, perhaps an appropriate solution would make the body of the function

accept-ancestor-by-parenthood contingent on a particular prior belief. For ex-

ample, only when a matched proposition (parent ?a ?b) is believed to be accepted

should the connection be made between acceptance of the parent statement and the

acceptance of ancestry. In effect, we could make the act of connecting, itself, a propa-

gator which is the neighbor of the accepted state of the parent proposition. Figure 4-5

gives an example of such a compound propagator in action. When coded up properly

in MIT/Scheme using the s:when propagator, which lazily evaluates its body only

when its condition (the first argument) becomes true, such a rule might look like that

of Figure 4-6.

48

Cont.U. K.

R.

A.

Cont.U. K.

R.

A.

parent(howie, jeff).

ancestor(howie, jeff).

s:when

Cont.U. K.

R.

A.

Cont.U. K.

R.

A.

parent(howie, jeff).

ancestor(howie, jeff).

s:when

implies

Figure 4-5: Lazily attaching a rule using the s:when propagator, which builds the
connection between the acceptedness of parent(howie, jeff) and ancestor(howie, jeff)
only when the parent relationship is accepted.

49

(define (prove-ancestry-transitively)
(find-proposition-matching '(ancestor ?a ?b) '()

(lambda (prop environment)
(s:when (accepted prop-1)

(find-proposition-matching '(ancestor ?b ?c) environment
(lambda (prop-2 environment)

(s:when (accepted prop-2)
(let ((ancestor-proposition (instantiate-proposition

'(ancestor ?a ?c)
environment)))

(accept ancestor-proposition
(list 'prove-ancestry-transitively

(get-binding '?a environment)
(get-binding '?b environment)
(get-binding '?c environment))

(list (accepted prop-1)
(accepted prop-2)))))))))))

Figure 4-6: Lazily proving ancestry through transitivity. Even though propositions
matching (ancestor ?a ?b) and (ancestor ?b ?c) might exist, this function will
wait until both propositions are actually accepted before accepting the consequent
(ancestor ?a ?c), as the s:when function will lazily evaluate its body only when
the contents of the cell in its first argument (i.e. accepted belief state of the given
proposition) is true.

(define (prove-ancestry-transitively)
(rule ((a (accepted (a-prop '(ancestor ?a ?b))))

(b (accepted (a-prop '(ancestor ?b ?c)))))
(accept (the-prop '(ancestor ?a ?c))

(list 'prove-ancestry-transitively a b)
(list a b))))

Figure 4-7: A simple syntax for lazily proving ancestry through transitivity. This
code effectively expands to the code given in Figure 4-6

50

4.4 Simplifying the Code

Because of the complexity of rules like that of Figure 4-6, the remainder of this thesis

will make use of a simplified syntax given in Figure 4-7. This syntax expands into

the syntax of Figure 4-6 through a macro expansion.

The syntax is designed to be easy to understand. In short, the rule keyword

behaves much as the Scheme let keyword, and consists of a list of variable assignments

and a body. The list of variable assignments assigns the various cells of a belief state

(e.g. accepted, unknown) to variables, with the a-prop keyword effectively acting as

a generator which returns propositions matching the specified proposition pattern.

Propositions are matched in order, with the environment for each matching propo-

sition being used to match subsequent proposition (effectively finding each proposition

in order, using subsequent nested find-proposition-matching functions, each tak-

ing, as an argument, the environment returned by the previous proposition). As a

result, all sets of propositions matching the list are discovered.

The body of the rule will only execute conditionally upon the truth of all belief

states in the list of variable assignments, much like the body of the s:when propagator.

Thus, the connection of the acceptance or rejection of a proposition specified in the

body will only occur so long as all of the conditions in the list are true. Furthermore,

as each proposition in the variables is found in order, as soon as one of the proposition

cells is no longer true, work will cease.

The accept inside the body of the rule behaves identically to the function used

above, except that the-prop acts to expand the proposition using the environment

implicitly defined by the enclosing matched variables. That is, the-prop returns

the proposition that would have been defined by instantiate-proposition, given

as the two arguments the same pattern and the environment returned by the final

proposition in the list of variables of the rule. There is also no need to explicitly

obtain the accepted state of the matching propositions as those accepted states are

automatically stored in the named variables. These variables may then be reused in

the body of the rules.

51

Thus, in short, the rule keyword effectively defines a rule with the list of belief

states of propositions which must all be believed before executing the body in which

work is done.

It is worth noting that, like in AMORD [5], it is possible to conceive of consequent

rules which are only active so long as the parent rule is active. Since the body of

a rule is simply code which is evaluated upon matching the antecedent of the rule,

by placing a rule within a rule (together with, or in place of, an accept function),

it is possible to make a secondary rule for which the corresponding propagators are

created and connected only when the antecedent beliefs of the parent rule are met.

This conditional construction of rules gives rule-designers additional control over when

rules are instantiated in the first place, providing finer-grain control than a lack of

nested rules would provide.

4.5 Controlling for Unknownness

Despite this improvement, there remains yet another inefficiency. While propositions

will now only be connected if a parent relationship is accepted, such a problem solver

is still useless in certain cases. Proving only 150 million ancestor relations is better

than many times that, but it’s unlikely that we would care to determine every ancestor

relationship. In practice, such an “ancestor finder” would want to focus only on Jeff’s

ancestry rather than every possible ancestor in the United States.

The previous insight regarding the lazy construction of the propagator network

is a crucial one in solving this smaller problem, as we may make use of belief states

other than mere acceptance to help control the process of problem solving. Rather

than creating the relationship between parent and ancestor when we accept a parent

relationship, why not simply extend the lazy rule mechanism to effectively activate

and deactivate its “search for ancestors” based on the goal of proving Jeff’s ancestry?

Figure 4-8 (example code in Figure 4-9) depicts how such a network might operate.

Both a basic desire to know and a lack of knowledge combine to serve as the input to a

s:when propagator, so that the construction of the conditional network in Figure 4-5

52

Cont.U. K.

R.

A.

Cont.U. K.

R.

A.

parent(howie, jeff).

ancestor(howie, jeff).

Cont.U. K.

R.

A.want-to-know(ancestor(howie, jeff)).

AN
D

s:when

Cont.U. K.

R.

A.

Cont.U. K.

R.

A.

parent(howie, jeff).

ancestor(howie, jeff).

Cont.U. K.

R.

A.want-to-know(ancestor(howie, jeff)).

AN
D

s:when

s:when

implies

Figure 4-8: Controlling the search for ancestors only when such a search is needed.
Only when (want-to-know (ancestor ?a ?b)) is accepted and the corresponding
(ancestor ?a ?b) proposition is unknown will a proof be attempted (bottom). If
the ancestry proposition is known (i.e. accepted as true or rejected as false) for any
reason, work to prove ancestry will cease.

53

(define (prove-ancestry-by-parenthood)
(rule ((k (accepted (a-prop '(want-to-know (ancestor ?a ?b)))))

(u (unknown (a-prop '(ancestor ?a ?b)))))
(rule ((p (accepted (a-prop '(parent ?a ?b)))))

(accept (the-prop '(ancestor ?a ?b))
(list 'prove-ancestry-by-parenthood k u p)
(list p)))))

Figure 4-9: Controlling the search for ancestors only when such a search is needed.
This code corresponds to the behavior in Figure 4-8.

will not even occur unless there is a need to know the ancestry relationship and the

ancestry relationship’s unknown belief state is true. Once it is true (bottom), the

secondary conditional network is created.

A crucial difference between Figure 4-8 and Figure 4-5, however, is that as the

s:when in the former is conditioned on the ignorance of the ancestor relationship, once

the ancestry is known, the s:when is turned off. If the contents of the s:when actually

listen for a number of possible candidate matches and construct the connection for

each one (e.g. in the transitive ancestry case, where there may need to be a number

of different ancestry relationships that must be built), this work may be turned off

when the ancestry relationship in question has been proved. In short, as soon as we

know that there is (or is not) such ancestry, we automatically cease doing additional

work to prove it!

Such a system admittedly bears some superficial similarities to the Belief-Desire-

Intention model of rational agents [23]; beliefs, combined with the desires and inten-

tions expressed by want-to-know propositions, work together to effect work, activate

appropriate rules, and do work. But here, we do not propose that all propositional

systems must adhere to a BDI-like model, but merely demonstrate that the propo-

sitional system allows for the construction of a BDI-like modality of rational actions

and choices. The propositional system is actually far more flexible and may be used

to do more than build simple BDI agents. Indeed, the power of the propositional

system goes farther and may be used to solve far more complex problems that may

even require justifications of the choices made.

54

Chapter 5

Building Justifications

While a problem solver capable of answering any kind of complex problem is indeed

more valuable than one which cannot, the answers it produces are only as reliable

as they can be proven to be correct. Mathematical and theoretical approaches may

be used to derive the correctness of a given algorithm, but such approaches cannot

necessarily account for incorrect inputs or assumptions which may produce erroneous

answers. In addition, many practical problems may have a requirement that solutions

be capable of being audited to confirm correctness of inputs and of the accuracy of

outputs for quality control or legal reasons.

Tracing the process by which an answer was constructed has many benefits beyond

auditing, accountability, and improving an end-user’s confidence in generated answers.

Analysis of answer generation may also be used to automate the diagnosis and repair

of unexpected behavior, to help optimize future problem solving performance when

answering similar questions, or even to help model risks involved in solving problems.

Examining justifications for answers may even prove useful in testing hypotheses

by identifying which premises contributed to the generation of contradictions. Such

a feature may have a practical impact. For example, analysis of the orbit of Mercury

using purely Newtonian mechanics predicts the precession of its perihelion, but in

1859, Le Verrier uncovered a conflict between the expected value of this precession

given Newtonian mechanics and the actual value resulting from measurements of

Mercury’s observed position over time. A number of alternate hypotheses to explain

55

the discrepancy were proposed, but each hypothesis had defects when predicting other

astrophysical phenomena which led them to be discarded. Only the replacement of

the premises of Newtonian mechanics with those modified by Einstein’s theory of

general relativity resolved the 43′′ per century discrepancy in Mercury’s precession

while agreeing with other physical phenomena.1 In practice, then, the “traces of the

results” of these alternative theories and hypotheses were analyzed to identify flaws

and propose new theories until a resolution was achieved.

Given all these benefits to the production and use of traces of execution, a problem

solving system which is capable of providing justifications for its answers is more

valuable and more useful than one which cannot. Thus, we must ask if it is possible

to extend the powerful problem solving capabilities of the propositional system to

provide such justifications. If so, the propositional system becomes more valuable for

the reasons mentioned above. The remainder of this chapter focuses on how such a

mechanism may be built with minimal overhead, using the existing structure of the

underlying propagator system to construct such justifications.

5.1 What is a Justification?

Before we can evaluate whether or not the propositional reasoning system can be

modified to support the creation of meaningful justifications for its answers, we must

first define exactly what is meant by the word justification.

A justification is, effectively, a story of how a particular state came to exist, that

is, the sequence of events that, taken as a whole, caused a particular action, product,

or belief to exist. Justifications are typically minimal in extent. For the purposes

of this thesis, a justification does not include incorrect decisions and actions which

were irrelevant to the production of a given state except in so far as they may have

impacted the sequence and timing of the events that are relevant to the state being

justified.

1A comprehensive history of the discovery of, and various solutions to, the problem of Mercury’s
precessing perihelion, up to and including its resolution due to general relativity, is given in [24].

56

In short, a justification is a description of the causal tree of some state, including

both proximal and distal causes, which, if considered as a partially-ordered directed

graph from cause to effect, would be sufficient to explain the evolution and production

of a given state.

Justifications are related to the concept of document provenance, which consists of

“the record of actions taken on [a] particular document over its lifetime,” [8] and data

provenance, a description of how a particular piece of data came to be and arrived in

a given database [3].

Finally, it is worth keeping in mind that we should differentiate justifications from

the concept of dependencies or premises, discussed previously in Section 3.3, which

describe the ultimate supports for something. While the former tells us how we got

somewhere (“why-provenance” in [3]), the latter tells us only those facts or sources

that we depended on to get there (“where-provenance” in the same).

5.2 The Suppes Formalism

So how can we characterize a justification of a particular belief produced by a proposi-

tional problem solver? As demonstrated in Chapter 4, the beliefs held by propositional

problem solvers evolve over time based on the logical connections (such as implica-

tion relationships) between different belief states. What is a natural formalism for

justifications which describe this evolution?

Since we speak of logical relationships, a naïve answer would be to say that our

justifications should take the form of logical proofs. This is not an unreasonable

stance to take, given that all of the examples shown so far involve logical implications,

conjunctions, and disjunctions. But what if more complex propagators are used to

solve a problem? Not all problems are best formulated in terms of a Boolean algebra.

For example, numerical solutions may be more amenable to mathematical algebraic

proofs, and it is quite possible that the relationships between belief states as expressed

by the propagators that connect them may not be purely Boolean or algebraic in

nature. Even so, the generic form of a mathematical proof seems quite reasonable to

57

{1} (1) C→ (D→ B) P
{2} (2) −G ∨ C P
{3} (3) D P
{4} (4) G P
{2, 4} (5) C 2, 4 T
{1, 2, 4} (6) D→ B 1, 5 T
{1, 2, 3, 4} (7) B 3, 6 T
{1, 2, 3} (8) G→ B 4, 7 C.P.

Figure 5-1: Example 2 from Chapter 2 of Suppes’s Introduction to Logic, in which
Suppes proves the following (symbolic annotations mine): “If the Cards are third (C),
then if Dodgers are second (D) the Braves will be fourth (B). Either the Giants will
not be first (−G) or the Cards will be third. In fact, the Dodgers will be second.
Therefore, if the Giants are first, then the Braves will be fourth.”

consider, as long as we expand the definition of an operation to include any general-

purpose propagator.

One wrinkle complicates the adoption of a simple proof mechanism. As mentioned

in the previous chapter, navigation of the the answer space (e.g. backtracking) neces-

sarily requires the correct management of the set of dependencies which are trusted

at any given point in time. Indeed, it should be possible not only to trace the “why-

provenance” but also the “where-provenance” for any given belief in our system, so

that the proper derivation of a belief may be well understood and demonstrated.

While traditional proofs, such as those typically taught in basic geometry and

algebra classes point only to the processes by which a derivation or manipulation

of data occurs, the proof formulation proposed and utilized by Patrick Suppes [28]

captures not only the nature of a derivation, but also the dependencies upon which

these conclusions are based. An example of such a proof may be seen in Figure 5-1,

Example 2 from Chapter 2 of Suppes’s Introduction to Logic, which demonstrates the

application of premises (P), tautological implication (T), and conditional proof (C.P.)

to prove the existence of an implication relating to placement in a baseball wild card

race.

In the proof, Suppes tracks not only the premises upon which each subsequent

statement depends (left column), but also the reasons for derivation (right column).

58

As such, Suppes’s proof formalism demonstrates that it is possible not only to show

(8) G → B, but also that it is directly derived from (4) G and (7) B by conditional

proof, and depends on the continued acceptance of the premises (1) C → (D → B),

(2) −G ∨ C, and (3) D.

Suppes’s example also demonstrates the difference between dependencies and jus-

tifications. Although the premise (4) G is an integral part of the proof of (8), the

conclusion does not actually depend on it being true because implications may be

derived using conditional proofs without dependence on the antecedent.

5.3 Building Justifications

Given the power of Suppes’s formalism in managing both justifications and depen-

dencies jointly, can we integrate Suppes’s formalism into the propositional reasoning

system in such a way that we may gain the power of justification generation seam-

lessly without any additional syntactic changes to our propositional reasoning? I will

demonstrate that this is indeed possible, by making use of the innate graph structure

of the propagator network.

Since a propagator network may be envisioned as a graph of cells and propagators,

it is possible to impose a data structure above and beyond those used in the basic

propagator “publish-subscribe” model to represent the abstract structure of propaga-

tors as a navigable directed graph. The MIT/Scheme implementation of propagators

includes such an abstraction by collecting cells into groups called diagrams.

Diagrams may be defined recursively, as diagrams may contain one or more parts

which are also diagrams, with cells acting as simple diagrams consisting of no addi-

tional parts. More complex diagrams may be made from combining cells and diagrams

which contain them as component parts of the complex diagram.

As a result, the diagram structure of a propagator network is effectively a pyrami-

dal, directed graph (as in Figure 5-2) which effectively maps cells on the computational

level to the “components” to which they belong at decreasing levels of abstraction. A

given diagram (or cell) may belong to any number of parent “clubs” (i.e. the parent

59

diagrams of which the diagram is a part). As a result, the given pyramid of diagrams

is not a tree structure but a directed, acyclic graph. When a propagator is created, a

diagram is automatically constructed at the first abstraction layer above basic cells.

This diagram collects those cells which it reads and writes as “parts” of the initial

abstract diagram.

As multiple propagators may claim a cell as a “part” of the parent diagram, cer-

tain lower-level diagrams may be easily identified as “boundaries” between different

diagrams at a higher abstraction level. For example, cell C in Figure 5-2 belongs not

only to temperature-converter, but also weather-model, and as such may be seen

as a cell which is on the boundary of the two diagrams.

By annotating the part relationships at the time the network is created, it is pos-

sible to determine whether cell C is an input to A, an input to B, or both, as the

propagators themselves may be analyzed to determine whether or not their imple-

mentation will read a cell or write a cell (or both). As such, promises to “only read

a cell” may be interpreted as cells which are input to the diagram, while promises to

“write only” would similarly be interpreted as output.

Justifications for the content of a cell may thus be constructed by climbing the

“diagram pyramid” to an appropriate abstraction level, identifying “input” cells of the

given diagram, and then querying those cells for their contents and working to find

their inputs in turn. In this manner, a list of antecedent cells and values may be

crawled at a given abstraction level using an appropriate graph-traversal algorithm,

and the values of those cells may be collected, along with the dependencies and any

other information stored in the TMS in each cell.

For example, given the first part of the example in Figure 5-2, suppose that we

wish to generate a justification for the value at cell C. If we asked for a justification

(Figure 5-3), we would determine which diagrams C was an output for at a given

level (say level 2). For these diagrams (x× 5/9), we would then determine the inputs

(B) and include those in the justification. Likewise, we would then identify those

diagrams for which B is an output at the same diagram level, 2 (x − 32), and the

inputs to those diagrams (A). The full justification would thus include the value and

60

Temperature
in Fahrenheit

(A)

Temperature
in Celsius

(C)

x − 32
x output

(B)

x × 5/9x

Therm. 1 Therm. 2

temperature-converter

Tomorrow’s
Temperature

(D)

weather-model

A B C D

x - 32

pa
rt-

of

x × 5/9

temperature-converter weather-model

[propagator network]

created-by (part-of)

inp
ut

(pa
rt-

of)

level 0

level 1

level 2

level 3
(computational)

output
(part-of)

Figure 5-2: A complex propagator network maps to a pyramidal semantic structure.
More abstract operations are represented at higher levels. At the top, three cells,
A, C, and D, are connected by two compound propagators, temperature-converter
and weather-model. Both compound propagators expand into partial propagator
networks. Below, the same network is laid out in terms of its diagrammatic structure.
Level 3 represents the concrete cells of the network, while higher levels represent the
propagators and compound propagators that connect them. All arrows represent
“part-of” relationships between the cells or diagrams at one level and the diagrams
that belong to a higher level. Colors and line patterns represent annotations which
may be made (e.g. a promise that a given cell is used only as input or as output by
a propagator).

61

supports of each cell crawled in this process, A, B and C, by querying the truth

maintenance system stored in each cell. These TMSs are necessarily informed by the

propagators that sent updates to them.

While the example in Figure 5-3 describes a system in which each propagator

has only one input, the recursive algorithm for generating justifications is equally

applicable to diagrams with an arbitrary number of inputs. Instead of examining

each input sequentially, the inputs could be crawled and included in the justification

in a breadth-first manner.

5.4 Simplifying Justifications

One significant issue encountered when constructing a justification is the choice of an

appropriate abstraction level for the justification. For example, when converting a

temperature between degrees Fahrenheit and degrees Celsius, as in Chapter 3, it may

be useful to detail each step in the conversion to demonstrate that the conversion is

working correctly. On the other hand, if the conversion is part of a much more complex

system, such as a numerical weather model, the precise trace of each mathematical

step to convert contributes to excessive verbosity of the justification. It may suffice to

state that the temperature was converted, leaving the exact mathematical operations

implicit.

Given this, it would be incredibly useful if we did not necessarily commit to a

level of detail until the time the justification was generated. That is, our choice of

mechanism for producing justifications should allow us to obtain multiple levels of

detail of a justification.

Fortunately, this struggle between the simple and the complex is easily resolved in

the diagram model. The pyramidal structure of the diagram-part relationship allows

for the creation of any number of abstraction layers between the lowest “computa-

tional” units and the highest level which represents the problem solver itself. As a

result, it is possible to choose to display a given level of justification (simple to com-

plex) by simply selecting an appropriate abstraction level to generate justifications.

62

41°F 9 5°C

x - 32 x × 5/9

temperature-converter

[propagator network]

A B C

(1)(2)(3)

((C has-value 5 ; (1)
by (* B (/ 5 9))
with-premises thermometer)

(B has-value 9 ; (2)
by (- A 32)
with-premises thermometer)

(A has-value 41 ; (3)
by (thermometer-reading)
with-premises thermometer))

Figure 5-3: A justification may be generated by recursively crawling diagrams at a
given level from outputs to inputs.

63

41°F 9 5°C

x - 32 x × 5/9

temperature-converter

[propagator network]

A B C

(1)(2)

((C has-value 5 ; (1)
by (temperature-converter A)
with-premises thermometer)

(A has-value 41 ; (2)
by (thermometer-reading)
with-premises thermometer))

Figure 5-4: A simpler justification may be generated by crawling diagrams at higher
levels.

A simple justification may be generated by simply climbing to one of the highest

abstraction levels. For example, instead of generating a detailed justification from

level 2 as in Figure 5-3, we may instead generate a simpler justification by crawling

the diagrams at level 1, as shown in Figure 5-4.

64

Chapter 6

Propositions in Practice

So far, I have demonstrated the principles of the propositional reasoning system, but

I have yet to demonstrate its viability in solving real world problems such as the

insurance company scenario presented at the beginning of this thesis. In this chapter,

I intend to walk through the implementation of a propositional problem solver capable

of addressing that very problem. In so doing, I hope that the principles which I have

laid out in previous chapters will be made obvious.

6.1 The Problem

As stated previously, consider an insurance underwriter, Sally, who works for the

insurance company Aintno. As she reviews the file of a prospective customer, Danny,

she must make a decision on his eligibility for insurance based on his risk and activity.

As part of his application, he has included information about his Facebook and Flickr

social networking accounts, among the many other details in his application.

Sally feeds this application to an assisting proposition-based problem solver which

must then decide whether or not Danny is eligible for insurance based on a set of

scoring criteria (Table 6.1). If Danny’s aggregate score is less than 2, Danny is

eligible for insurance. If it is greater than 3, Danny is ineligible for insurance. If it

is between 2 and 3, more work may be done to prove Danny’s eligibility (including a

determination of Danny’s eating habits).

65

Criteria Contribution
Customer eats healthy food -2
Customer eating habits are unknown -1
Customer eats unhealthy food +2
Customer is a skydiver +3
Customer being a skydiver is unknown +0.5
Customer is not a skydiver -0.1
Customer is a rock climber +2
Customer being a rock climber is unknown +0.25
Customer is not a rock climber -0.1
Customer is a scuba diver +1
Customer being a scuba diver is unknown +0.1
Customer is not a scuba diver -0.1
Customer rides a motorcycle +2
Customer riding motorcycles is unknown +0.2
Customer does not ride motorcycles -0.1

Table 6.1: Contributions to risk score based on personal behaviors

This problem solver has the ability to crawl the social network information Danny

has provided and use the conclusions drawn from that information (posts, photos,

etc.) to justify arguments in favor of a given risk score. Indeed, such justifications

are a necessary part of the problem solver; once a score has been generated, Sally

must include a justification for the score when she submits her final decision with

respect to granting or denying eligibility to Danny.

6.2 Bootstrapping the System: Propositions

For the purposes of this example, I will assume that the problem of extracting beliefs

from images and free-form text is solved and that such algorithms are capable of pop-

ulating belief states of appropriate propositions which are indexed in a database. This

is a reasonable assumption to make; algorithms for entity and sentiment extraction

from text, and object and gesture recognition in images have already been deployed

in active production systems. Additionally, the methods used to solve these problems

are not directly relevant to the problem of actually calculating a risk score addressed

in this example.

66

Proposition Current Belief Evidence
Danny engages in skydiving accepted Facebook post
Danny engages in motorcycling accepted Flickr photo
Danny engages in SCUBA diving rejected Danny’s forms
Danny engages in rock-climbing unknown Danny’s forms
Hal’s Hot Dogs is a restaurant accepted Hal’s Hot Dogs website
Hal’s Hot Dogs primarily sells hot dogs accepted Hal’s Hot Dogs website
Hot dogs are food accepted common knowledge
Hot dogs are unhealthy accepted FDA
Danny works at Hal’s Hot Dogs accepted Danny’s forms
Danny likes Hal’s Hot Dogs accepted Danny’s forms

Table 6.2: Propositions which might be believed about Danny

Thus, the propositions that might be discovered by such a system may be sim-

ply expressed by populating the belief state of such propositions which have been

discovered. Some of these propositions are given in Table 6.2.

As stated in Chapter 3, we may express propositions by virtue of creating ap-

propriate propagator networks for each proposition. The cells created as part of

the network may then be populated with an appropriate value associated with each

belief state based on the dependencies (i.e. the posts, photos, etc.) from which

the belief was established. In my MIT/Scheme problem solver, a proposition may

be constructed using the proposition function, which is passed the pattern of the

proposition to be asserted as its argument (for example, (proposition '(Danny

engages-in skydiving))).

But how do we populate our initial beliefs? To accomplish this, we “tell” a par-

ticular belief state its value. The tell! function automatically constructs an up-

date message which is sent to the cell specified as the first argument of the func-

tion. The value to be stored is given as the second argument, and all all subse-

quent arguments are the dependencies for that value. Thus, we might state that the

proposition (Danny engages-in skydiving) is accepted by way of a Facebook post

through the function call (tell! (accepted (proposition '(Danny engages-in

skydiving))) #t 'Facebook). In this way, we update the accepted belief cell with

the true value (#t) and a dependency named Facebook.

67

(define (true! pattern source)
(tell! (accepted (proposition pattern)) #t source))

(define (unknown! pattern source)
(tell! (unknown (proposition pattern)) #t source))

(define (false! pattern source)
(tell! (rejected (proposition pattern)) #t source))

Figure 6-1: The tell! function can be simplified to refer to only the true, false
and unknown cells.

In practice, we may simplify telling true, false, and unknown values by making

appropriate functions which expand to the verbose tell! syntax for these common

cases, as in Figure 6-1. With these functions in hand, it becomes relatively sim-

ple to express basic beliefs, given in Figure 6-2. Thanks to the dependence on the

proposition function, the true!, unknown! and false! functions automatically

create the propagator network for each proposition if it does not already exist. Oth-

erwise, the proposition is retrieved from a database.

6.3 Bootstrapping the System: Rules

Establishing the basic belief states is only half of the solution, however. The core

of any problem solver are the rules and algorithms which allow it to actually draw

conclusions, and I have not yet demonstrated how such rules might be created. To

do so, we turn to Chapter 4, which demonstrated the construction of a number of

problem solving rule components.

The scoring rules in Table 6.1 may be readily expressed in terms of simple rules,

using the rule syntax introduced at the end of the chapter, as each appropriate belief

state would be matched to establish the contribution to risk. Some of these rules can

be seen in Figure 6-3, where a simple pattern match against an appropriate belief

state is sufficient to accept a “contribution to risk” of an appropriate size.

For example, in the case of the risk if a customer is a sky-diver, the proposi-

tion (contribution risk ?subject 3.0 skydiver) is accepted for a given subject

68

;;; Ground facts about Danny

(true! '(Danny engages-in skydiving) 'Facebook)

(true! '(Danny engages-in motorcycling) 'Flickr)

(false! '(Danny engages-in scubadiving) 'Danny)

(unknown! '(Danny engages-in rockclimbing) 'Danny)

;;; His eating habits

(true! '(hals-hotdogs is-a restaurant) 'Hal)

(true! '(hals-hotdogs primarily-serves hotdogs) 'Hal)

(true! '(hotdogs is-a food) 'common-knowledge)

(true! '(hotdogs is unhealthy) 'FDA)

(true! '(Danny works-at hals-hotdogs) 'Danny)

(true! '(Danny likes hals-hotdogs) 'Danny)

;;; Ground facts about AINTNO

(true! '(risk-accept-threshold AINTNO 2) 'aintno-1)

(true! '(risk-reject-threshold AINTNO 3) 'aintno-2)

Figure 6-2: Beliefs captured by the risk-scoring system based on information gleaned
from Danny’s Facebook and Flickr accounts, as well as his insurance application (the
last labeled with a dependency of 'Danny). In addition, two risk score thresholds are
included as belief states.

69

(rule ((s (accepted (a-prop '(?subject engages-in skydiving)))))
(accept (the-prop '(contribution risk ?subject 3.0 skydiver))

(list 'risk-estimate 'skydiving)
(list s)))

(rule ((s (unknown (a-prop '(?subject engages-in skydiving)))))
(accept (the-prop '(contribution risk ?subject 0.5 skydiver))

(list 'risk-estimate 'skydiving)
(list s)))

(rule ((s (rejected (a-prop '(?subject engages-in skydiving)))))
(accept (the-prop '(contribution risk ?subject -0.1 skydiver))

(list 'risk-estimate 'skydiving)
(list s)))

Figure 6-3: Rules establishing contributions to risk with respect to whether an indi-
vidual is a sky-diver

only when the proposition (?subject engages-in skydiving) is accepted. Such

a contribution is accepted contingent on the acceptance of the engages-in state-

ment, but its acceptance also labeled with the why-provenance from its second argu-

ment. Thus, the acceptance of the risk contribution is due to (list 'risk-estimate

'skydiving), that is, based on a risk-estimate with respect to skydiving.

Rules can, of course, be more complex than these simple sky-diving rules. Aintno’s

policy may state, for example, that the fact of whether or not Danny eats unhealthy

food is only relevant if there is a need to determine it (i.e. if there is sufficient

evidence to reject Danny on another basis, there is no reason to investigate Danny’s

eating habits). In such a case, we can turn to the more complex want-to-know

formula expressed at the end of Chapter 4. Such an expression might resemble that

in Figure 6-4.

But a rule such as that in Figure 6-4 demands a way to establish the need to

determine whether Danny eats unhealthy food. For that, we might wish to condition

the specific “need to know” on a more general belief that “information is lacking”.

Such a condition would necessarily connect the general directive to find information

to score Danny’s risk with the specific ways in which the information may be found

70

(rule ((req (accepted (a-prop '(does ?subject eat unhealthy-food)))))

(rule ((e (accepted (a-prop '(?subject eats ?food))))
(f (accepted (a-prop '(?food is unhealthy)))))

(accept (the-prop '(?subject eats unhealthy-food))
(list 'common-sense 'food)
(list e f)))

(rule ((l (accepted (a-prop '(?subject likes ?thing))))
(t (accepted (a-prop '(?thing is-a food)))))

(accept (the-prop '(?subject eats ?thing))
(list 'preference 'food)
(list t l)))

(rule ((p (accepted (a-prop '(?subject likes ?place))))
(r (accepted (a-prop '(?place is-a restaurant)))))

(accept (the-prop '(?subject eats-at ?place))
(list 'likes 'restaurant)
(list p r)))

(rule ((p (accepted (a-prop '(?subject works-at ?place))))
(r (accepted (a-prop '(?place is-a restaurant)))))

(accept (the-prop '(?subject eats-at ?place))
(list 'works-at 'restaurant)
(list p r)))

(rule ((p (accepted (a-prop '(?subject eats-at ?place))))
(r (accepted (a-prop '(?place is-a restaurant))))
(s (accepted (a-prop '(?place primarily-serves ?thing))))
(f (accepted (a-prop '(?thing is-a food)))))

(accept (the-prop '(?subject eats ?thing))
(list 'eating-at 'restaurant)
(list p r s f)))

)

Figure 6-4: Rules that help determine whether or not Danny eats unhealthy food.
Such rules might only ever be active (i.e. work might only ever be done to prove that
he eats unhealthy food) if there is not sufficient proof to render Danny ineligible for
insurance.

71

(rule ((i
(accepted
(a-prop '(?company needs-more-information ?subject)))))

;; Eating unhealthy food is questionable, but not worth looking at
;; unless not enough other information to determine eligibility.
(accept (the-prop '(does ?subject eat unhealthy-food))

(list 'digging-deeper)
(list i))

(rule ((e (accepted (a-prop '(?subject eats unhealthy-food)))))
(accept (the-prop

'(contribution risk ?subject +2 eats-unhealthy-food))
(list 'risk-estimate 'unhealthy-food)
(list e)))

(rule ((e (unknown (a-prop '(?subject eats unhealthy-food)))))
(accept (the-prop

'(contribution risk ?subject -1 unknown-food-habits))
(list 'risk-estimate 'unhealthy-food)
(list e)))

(rule ((e (rejected (a-prop '(?subject eats unhealthy-food)))))
(accept (the-prop

'(contribution risk ?subject -2 eats healthy-food))
(list 'risk-estimate 'unhealthy-food)
(list e))))

Figure 6-5: There only exists a need to score the risk from eating unhealthy food if
there is not enough evidence to accept or reject an individual’s insurance on other
grounds. Thus, as long as there is a need for more information, the need to determine
whether an individual eats unhealthy food (and appropriate risk scoring) will be
established.

(e.g. asking whether Danny eats unhealthy food). Thus, we may include a rule

like that in Figure 6-5, which conditions not only the scoring of unhealthy eating

habits, but also the establishment of the “need to know,” on a general need for more

information.

The expression of such a connection may seem at first glance to be needless

pedantry which may lead to an infinite regress of determining whether we “need

to know that we need to know”. Though an implementer will necessarily need to

tread with care to determine what is reasonable intent, this first step is actually quite

reasonable. As mentioned before, if the cost of discovering whether or not Danny

72

eats unhealthy food is expensive (it may take considerable processing and time to

interpret and extract features and intents from Facebook posts), we likely will only

want to do the work to determine whether or not Danny eats unhealthy food if we

cannot prove with certainty that Danny is, or is not, eligible for insurance. Thus, the

connection between the general “lack of information” and the specific “need to know”

Danny’s eating habits is actually quite indicative of a need for the level of inherent

control which propositional reasoning offers.

With all these rules in place, there remains only one component necessary to

actually properly rate risk: the mechanism to accumulate risk scores itself. Though

I have thus far demonstrated that problems may be resolved by the rule mechanism

described in Chapter 4, such partial propagator networks are not the only networks

which may be useful in solving problems. The propagator network model permits

a vast number of network constructions which may be used to solve problems in a

wide variety of ways. Accumulation may be accomplished by one such “alternative”

network structure.

Unlike the basic scoring mechanisms described above, accumulation is a complex

operation which cannot be simply implemented with rules alone, due to the need to

“undo” an accumulation when premises change. For example, while an assumption

of ignorance regarding Danny’s sky-diving hobby (or lack thereof) contributes a risk

factor of 0.5 to overall accumulated risk, if, at a later time, he is found to indeed

engage in sky-diving, the contribution to the overall accumulated risk score must be

changed from 0.5 to 3. This change will necessarily alter the overall risk score (such

as by increasing it from 3.5 to 5). Furthermore, the overall risk score must then

depend on the sources of information which contribute to the acceptance of Danny’s

sky-diving which were not previously present, as the new score of 5 is only true, in

part, due to that information.

In order to implement accumulation, an alternative partial network may be con-

structed like that presented in Figure 6-6. The basic premise of the accumulator

structure is that, at any stage in the life of an accumulator, there is an implicit as-

sumption that all contributions to the value of the accumulator are known. Thus, the

73

3.5 6.25p:+0 p:+

identity-value
(A)

partial-value-1
(B)

partial-value-2
(D)

output-value

3.5

input-1

aggregation-
propagator

(C)

aggregation-
propagator

(C)

p:default-
value

p:default-
value

2.75

input-2

2.753.5 input-buffer-1 input-buffer-2

6.25#f

there-is-only-one-input
(E)

p:switch p:switch #t

there-are-only-two-inputs
(E)

Figure 6-6: A propagator network which accumulates two values by addition (p:+).
Partial values slowly accumulate until a p:switch connects a partial value (partial-
value-2) to the final value based on the assumption that there are no more inputs to
the accumulator.

74

basic network of an accumulator constructs a “final” partial accumulated value (D)

by chaining partially accumulated values (B) starting with an identity value (A) to

additional inputs to the accumulator by way of a known binary operator (such as the

p:+ addition operator) (C). This “final” partial accumulated value is then connected

to an output cell through a “switch” propagator which only propagates the “final”

value to the output as long as the assumption that there are no more contributions

to the accumulator is true (E).

Figure 6-7 illustrates how the number of inputs to an accumulator may increase.

When a new contribution is identified, the chain of accumulator inputs may be ex-

tended by constructing additional propagators and cells and appending them to the

chain of partial accumulations. Following this, the assumption that all contributions

were known may be kicked out, disconnecting the old “final” partial accumulation

(D) from the output cell. Then, the newly constructed “final” partial accumulation

(F) may be attached to the output cell to effectively update the value with the new

contribution.

Figure 6-8 illustrates how removing contributions may be accomplished through

the use of the p:default-value propagator and the buffer cell which sit between

the contributing cell and the partially accumulated value. The p:default-value

propagator provides a default value for an output cell whenever the primary input (i.e.

the contributing cell) contains no contribution whatsoever. Thus, when a contribution

is “removed”, one need only remove the support for the value in the input cell. With no

supported value in its primary input, the p:default-value propagator will instead

connect the alternate input (i.e. the identity cell) to the input buffer cell used as input

to the partial accumulation. As a result, only the identity value supports the partial

accumulation at that point, so that the actual contribution at the newly unsupported

partially accumulated value is effectively eliminated thanks to the use of the identity

value for the operation, such as adding 0 or multiplying by 1.

We may, of course, simplify this partial network using a compound propagator,

named p:accumulator. This propagator constructs an accumulation network and

is invoked with five arguments. The first argument is a simple symbolic prefix used

75

3.5
6.25

p:+
0

p:+

identity-value
(A)

partial-value-1
(B)

partial-value-2
(D
)

output-value

3.5

input-1

aggregation-
propagator

(C
)

aggregation-
propagator

(C
)

p:default-
value

p:default-
value

2.75

input-2

2.75
3.5

input-buffer-1
input-buffer-2

7.5
#f

there-is-only-one-input
(E)

p:sw
itch

p:sw
itch

#f

there-are-only-tw
o-inputs

(E)

7.5
p:+

partial-value-3
(F)

aggregation-
propagator

(C
)

p:default-
value

1.25

input-3

1.25
input-buffer-3

p:sw
itch

#t

there-are-only-three-inputs
(E)

F
igure

6-7:
A
dding

a
new

input
to

a
propagator-based

accum
ulator.

H
ere,

input-3
is

added
as

an
input,

and
the

assum
ption

that
there

are
only

tw
o
inputs

is
kicked

out,so
that

the
finalvalue

contains
only

the
value

ofpartial-value-3.

76

3.5 3.5p:+0 p:+

identity-value
(A)

partial-value-1
(B)

partial-value-2
(D)

output-value

3.5

input-1

aggregation-
propagator

(C)

aggregation-
propagator

(C)

p:default-
value

p:default-
value

null

input-2

03.5 input-buffer-1 input-buffer-2

3.5#f

there-is-only-one-input
(E)

p:switch p:switch #t

there-are-only-two-inputs
(E)

Figure 6-8: Removing a contribution from an input to the propagator-based accu-
mulator in Figure 6-6. Here, input-2 is removed (its value becomes *the-nothing*,
depicted here as null). This causes the p:default-value propagator to which it is
connected to instead propagate the value from the identity cell (0) to the input of the
partial-accumulation.

77

for labeling and debugging. The second is the name of the binary operator used

in accumulation (for example, p:+ or p:*) and the third argument is the identity

value for that operation. The fourth argument is the cell to which the output of

the accumulator will be connected, and the fifth and final argument is a cell which

will contain the propagator which may be invoked to add new contributions to the

accumulator.

With this propagator in hand, the accumulation of risk may be handled using the

code in Figure 6-9, which constructs an accumulator whenever a request for accumu-

lation (please-accumulate ?type ?subject ?requester) is found and accepted.

Then, for every proposition representing an accumulator contribution (contribution

?type ?subject ?num ?reason) which is accepted, a cell representing the value of

that contribution is created, and its value is supported by the acceptance of the

contribution proposition. This value is then connected to the accumulator using the

p:add-new! propagator, at which point its contribution will be reflected in the output

cell of the accumulator.

Finally, the output value of the accumulator is mapped to a proposition of the

form (accumulator ?type ?subject ?requester ,accumulation), allowing other

propositional pattern-matching to make use of the value of the accumulation.

With such a mechanism, Aintno need only express a need to accumulate risk,

which may be done using rules and tests for risk thresholds, as in Figure 6-10,

in which the need to determine insurability establishes a need for accumulation

(please-accumulate risk ?subject ?company), and checks whether a given accu-

mulated risk (accumulator risk ?subject ?company ?risk-accumulator) is be-

low the acceptance threshold or above the rejection threshold before accepting or

rejecting on that basis.

6.4 The System in Operation

With the rules and propositions about Danny in place, we need only establish a need

to determine Danny’s insurability as an accepted proposition by way of the assertion

78

(rule ((r
(accepted
(a-prop '(please-accumulate ?type ?subject ?requester)))))

(let* ((name (symbol (pattern-value ?type)
":accumulator-of:"
(pattern-value ?subject)
":for:"
(pattern-value ?requester)))

(contribution-counter (make-counter)))
(let-cells (accumulation p:add-new!)

(p:accumulator name p:+ 0 accumulation p:add-new!)
(rule ((c

(accepted
(a-prop '(contribution ?type ?subject ?num ?reason)))))

(let* ((cname
(symbol name ":contribution:" (contribution-counter)))

(contrib (make-named-cell cname)))
(p:switch c (pattern-value ?num) contrib)
(p:add-new! contrib)))

(accept (the-prop
`(accumulator ?type ?subject ?requester ,accumulation))

(list 'accumulator-result)
(list r)))))

Figure 6-9: Accumulation of values is only done when there is a need to do such accu-
mulation ((please-accumulate ?type ?subject ?requester) is accepted). When
there is such a need, only accepted numeric contributions of the form (contribution
?type ?subject ?num ?reason) matching the request for accumulation are used.

79

(rule ((req
(accepted
(a-prop
'(please-determine-if ?subject is-insurable-by ?company)))))

(accept (the-prop '(please-accumulate risk ?subject ?company))
(list 'risk-evaluation)
(list req))

(rule ((result
(accepted
(a-prop
'(accumulator risk ?subject ?company ?risk-accumulator))))

(ath
(accepted
(a-prop
'(risk-accept-threshold ?company ?accept-threshold))))

(rth
(accepted
(a-prop
'(risk-reject-threshold ?company ?reject-threshold)))))

(let ((accumulated-risk-cell (pattern-value ?risk-accumulator))
(accept-threshold (pattern-value ?accept-threshold))
(reject-threshold (pattern-value ?reject-threshold)))

(p:> accept-threshold accumulated-risk-cell
(accepted (the-prop

'(?subject insurance-issued-by ?company))))
(p:> accumulated-risk-cell reject-threshold

(rejected (the-prop
'(?subject insurance-issued-by ?company))))

(p:and (e:<= accept-threshold accumulated-risk-cell)
(e:<= accumulated-risk-cell reject-threshold)
(accepted
(the-prop
'(?company needs-more-information ?subject)))))))

Figure 6-10: Only when there is a need to determine whether a potential cus-
tomer is insurable will the accumulation of risk be undertaken. More informa-
tion is needed to determine Danny’s insurability (accepted (the-prop '(?company
needs-more-information ?subject))) if the risk is between the accept and reject
thresholds.

80

(true! '(please-determine-if Danny is-insurable-by AINTNO) 'ian). The

above rules and propagator mechanisms will then work to solve the problem of whether

or not Danny is insurable.

Based on this need to determine insurability, the code in Figure 6-10 establishes

a need to accumulate risk. At this point, only the simple rule expressions like those

in Figure 6-3 will be active to establish contributions to risk based on Danny’s en-

gagement in risky hobbies as according to the beliefs established in Figure 6-2.

On their own, these facts are enough to deny Danny insurance as he engages in

skydiving and motorcycling, does not engage in SCUBA diving, and nothing is known

about whether or not Danny is a rock climber. This belief may be demonstrated read-

ily, as the rejected state of (Danny insurance-issued-by AINTNO) is held as true.

We may inquire as to why this is the case using the explain function (explain

(rejected (proposition '(Danny insurance-issued-by AINTNO))) 1), the re-

sults of which are given in Figure 6-11. At this description level (0), we find that

the rejection of (danny insurance-issued-by aintno) is supported (has-value

#t) based on the fact that the accumulated value in (out) (5.15) is greater than

the rejection threshold (3). The justification also explains that this accumulated

risk value is supported by the premises gathered from facebook, flickr, danny,

and risk:accumulator-of:danny:for:aintno:premise4. This last premise is the

assumption that there are no more contributions to Danny’s risk.

We can, of course, ask for more detail by digging into a more detailed justification

level (2), which gives the answer in Figure 6-12. This justification demonstrates that

contributions to the risk came from the addition of the risks from rock-climbing,

scuba-diving, motorcycling, and sky-diving.

But what if Sally remembers that Facebook posts should not be used to support

rejections of insurability? In that case, we need only kick out the premises supported

by Facebook (retract! 'Facebook), which will drop the accumulated risk within

the bounds of issuance (risk < 2) and rejection (risk > 3) of insurance. In this

range, the system now accepts the need to look for more information to determine

Danny’s insurability (?company needs-more-information ?subject). As a result

81

((((rejected (danny insurance-issued-by aintno)))
has-value
#t
by
((>:p) (out) (3))
with-premises
facebook
flickr
danny
risk:accumulator-of:danny:for:aintno:premise4)

((out) has-value
5.15
by
((p:accumulator) (0))
with-premises
facebook
flickr
danny
risk:accumulator-of:danny:for:aintno:premise4))

Figure 6-11: A simple justification, generated by the function call (explain
(rejected (proposition '(Danny insurance-issued-by AINTNO))) 1)

of accepting this proposition, the system now may accept the need to prove whether

or not Danny eats unhealthy food (Figure 6-5) and will attempt to find proof of that

proposition (Figure 6-4).

With such rules on unhealthy food now active, the system is again able to reject

Danny’s insurance application, based on the fact that he eats unhealthy food (specif-

ically, he works at hals-hotdogs, a restaurant, implying that he eats their food,

hotdogs, which, according to the FDA, are unhealthy). This justification can, of

course, be obtained using the explain function at a suitably deep justification level

(2), as in Figure 6-13.

82

((((rejected (danny insurance-issued-by aintno)))
has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises facebook flickr danny
risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno)
has-value 5.15
by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:4)
(risk:accumulator-of:danny:for:aintno:contribution:3)
(risk:accumulator-of:danny:for:aintno:contribution:2)
(risk:accumulator-of:danny:for:aintno:contribution:1)
(risk:accumulator-of:danny:for:aintno:zero))

with-premises facebook flickr danny
risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p)

((accepted (contribution risk danny .25 rockclimber)))
(.25))

with-premises danny)
(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p)

((accepted (contribution risk danny -.1 scubadiver)))
(-.1))

with-premises danny)
(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p)

((accepted (contribution risk danny 2. motorcycler)))
(2.))

with-premises flickr)
(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flickr)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flickr)

((risk:accumulator-of:danny:for:aintno:contribution:1)
has-value 3.
by ((switch:p)

((accepted (contribution risk danny 3. skydiver)))
(3.))

with-premises facebook)
(((accepted (contribution risk danny 3. skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((accepted (danny engages-in skydiving))))
with-premises facebook)

(((accepted (danny engages-in skydiving)))
has-value #t
by (user)
with-premises facebook)

((risk:accumulator-of:danny:for:aintno:zero) has-value 0))

Figure 6-12: Danny’s hobbies may be used as a basis to reject his insurance, a fact
which comes out of the justification generated by the explain function, given here
and in Appendix A.

83

((((rejected (danny insurance-issued-by aintno)))
has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises nothing:1 flickr danny fda common-knowledge hal

parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno)
has-value 4.050000000000001
by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:6)
(risk:accumulator-of:danny:for:aintno:contribution:5)
(risk:accumulator-of:danny:for:aintno:contribution:4)
(risk:accumulator-of:danny:for:aintno:contribution:3)
(risk:accumulator-of:danny:for:aintno:contribution:2)
(risk:accumulator-of:danny:for:aintno:contribution:1)
(risk:accumulator-of:danny:for:aintno:zero))

with-premises
(hypothetical 460 nothing:1 in #[entity 461] bool)
flickr danny fda common-knowledge hal parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno:contribution:6)
has-value -.1
by ((switch:p)

((accepted (contribution risk danny -.1 skydiver)))
(-.1))

with-premises parachutingassociation)
(((accepted (contribution risk danny -.1 skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((rejected (danny engages-in skydiving))))
with-premises parachutingassociation)

(((rejected (danny engages-in skydiving)))
has-value #t
by (user)
with-premises parachutingassociation)

((risk:accumulator-of:danny:for:aintno:contribution:5)
has-value 2
by ((switch:p)

((accepted (contribution risk danny 2 eats-unhealthy-food)))
(2))

with-premises fda common-knowledge hal danny)
(((accepted (contribution risk danny 2 eats-unhealthy-food)))
has-value #t
by ((((risk-estimate) (unhealthy-food)))

((accepted (danny eats unhealthy-food))))
with-premises fda common-knowledge hal danny)

(((accepted (danny eats unhealthy-food)))
has-value #t
by ((((common-sense) (food)))

((& ((accepted (danny eats hotdogs)))
((accepted (hotdogs is unhealthy))))))

with-premises fda common-knowledge hal danny)
(((accepted (hotdogs is unhealthy)))
has-value #t
by (user)
with-premises fda)

(((accepted (danny eats hotdogs)))
has-value #t
by ((((eating-at) (restaurant)))

((& ((accepted (danny eats-at hals-hotdogs)))
((accepted (hals-hotdogs is-a restaurant)))
((accepted (hals-hotdogs primarily-serves hotdogs)))
((accepted (hotdogs is-a food))))))

with-premises common-knowledge hal danny)
(((accepted (hotdogs is-a food)))
has-value #t
by (user)
with-premises common-knowledge)

(((accepted (hals-hotdogs primarily-serves hotdogs)))
has-value #t
by (user)
with-premises hal)

(((accepted (danny eats-at hals-hotdogs)))
has-value #t
by ((((works-at) (restaurant)))

((& ((accepted (danny works-at hals-hotdogs)))
((accepted (hals-hotdogs is-a restaurant))))))

with-premises hal danny)
(((accepted (hals-hotdogs is-a restaurant)))
has-value #t
by (user)
with-premises hal)

(((accepted (danny works-at hals-hotdogs)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p)

((accepted (contribution risk danny .25 rockclimber)))
(.25))

with-premises danny)
(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p)

((accepted (contribution risk danny -.1 scubadiver)))
(-.1))

with-premises danny)
(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p)

((accepted (contribution risk danny 2. motorcycler)))
(2.))

with-premises flickr)
(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flickr)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flickr)

((risk:accumulator-of:danny:for:aintno:contribution:1)
has #(*the-nothing*))

((risk:accumulator-of:danny:for:aintno:zero) has-value 0))

Figure 6-13: Danny’s employment at Hal’s Hot Dogs may be used against him if
Aintno is unable to prove that he should be insured or not, a fact visible when using
the explain function. This text is also provided in Appendix A.

84

Chapter 7

Beyond Propositions

Though I have demonstrated the viability of propositions in constructing and inte-

grating control with knowledge in problem solvers, it is difficult to prove that such

propositional reasoning is viable for all kinds of problem solving strategies. Certainly

the computational power of the underlying propagator network is equivalent to that of

a universal Turing machine1, but the mere ability to emulate any Turing machine does

not necessarily mean that propositional approaches are appropriate to all problems.

The true feasibility and flexibility of propositional problem solving can only be

uncovered in the course of future work spent exploring and implementing problem

solvers, using the propositional model, to solve different kinds of problems. Such work

will presumably uncover any weaknesses or flaws in the current system, whether such

flaws are due to current implementations of propagator networks or a fundamental

incompatibility of propositional problem solving with certain kinds of problems. In

the process of developing this propositional problem solving system, however, I have

identified a number of directions for future work to better determine the flaws of and

improve propositional problem solving. I will discuss these directions in detail in the

remainder of this chapter.

1Consider a single cell representing the state of the tape of a Turing machine, with propagators
attached to it which read the state stored in the cell and update it appropriately.

85

7.1 Supporting Multiple Worldviews

A crucial assumption made in the implementation of propositions described in this

thesis is the assumption that each proposition is associated with one set of the five

belief states. That is, it is assumed that a belief state for a proposition will only ever

be believed or disbelieved; there is to be no superposition of belief.

Within the context of the “agency” of a single problem solving process, this is not

necessarily a problem. In the examples provided in previous chapters, the inability to

superpose belief and disbelief is a non-issue, because the goal of each (partial) problem

solver was to resolve discordant beliefs so as to draw an appropriate conclusion.

A problem arises when there is a need to reconcile or work with multiple beliefs

simultaneously, such as when the beliefs of two distinct agents must be coordinated.

In such a situation it is unclear how two agents’ beliefs should be kept separate.

Because each cell contains a simple TMS which contains a single supported truth

value, it is impossible to interpret a single accepted cell’s value in the light of both

agents simultaneously. Certainly, one could maintain separate sets of premises and

evaluate the single cell in light of each premise set to obtain the different truth values

associated with beliefs of the same proposition, but such a system hardly allows us

to connect or synthesize the two beliefs in any meaningful fashion. Premise sets are

“external” to the propagator network. The contents of cells in a propagator network

may only be evaluated with respect to one premise set at a time, so there is no way

to properly depend on two (potentially conflicting) premise sets.

There are several possibilities for addressing this need to represent what amounts

to two distinct “world views.” We could choose to create additional belief states asso-

ciated with a proposition, each representing an agent and its associated basic belief

(e.g. “john accepts”, “john rejects”, “jane accepts”, “jane rejects”). Such a mechanism

would allow for a meaningful grouping of all beliefs relating to a single proposition

within multiple world views. It may, however, complicate addressing and naming of

individual belief states associated with a world view when resolution of each cell name

requires knowledge of the agent who holds that state.

86

Alternatively, we could represent each agent’s view of the proposition as a dis-

tinct proposition. This semantic reification of the proposition (e.g. (jane holds

(jack parent ben))) complicates instead the naming of a proposition, leaving the

problem of addressing the proposition, itself, unsolved. One benefit of this approach

is that rules may be easily constructed to relate two different agents’ views (e.g.

believes(jane, X) → believes(john, X)). That said, it is not immediately obvious

which approach is better, given that both approaches construct five additional belief

state cells for each agent which holds beliefs relating to a single proposition. As a re-

sult, regardless of the approach chosen to representing beliefs in multiple world views

with respect to a single proposition, the number of cells for both approaches scales

linearly in terms of the number of agents, and both are unwieldy in their naming

mechanisms.

An ideal solution would be to surface the underlying premise sets as cells on their

own and have propagators which make use of the premise-containing cells in any com-

putation (e.g. by propagating a value from an accepted belief state of one proposition

to another). Such a system has the advantage that each proposition retains only five

belief state cells, but comes with a distinct disadvantage: as propagators necessar-

ily do computation based on the contents of a cell, care must be taken to always

compute with respect to at least one set of premises. If this is not done, beliefs may

propagate to belief states in other propositions even though the relationships between

propositions themselves may differ between the worldviews.

For example, Jane and John may both accept the proposition (jack parent

ben), but they may instead disagree on the implication that such an acceptance nec-

essarily means that one must accept (jack ancestor jim). If this is done blindly

without consideration of a premise set, one may find that both Jane and John ac-

cept the latter proposition, even though they may not both accept the justification

generated to get there. Furthermore, as backtracking is currently handled when merg-

ing the contents of a cell with the contents of an update message, merge operations

would need to be able to directly manipulate the contents of relevant premise-cells,

complicating the design of the merge operations used in a propagator network.

87

7.2 Proof by Contradiction

A practical example of the need for multiple world-views can be observed in the

principle of reductio ad absurdum, mentioned previously in this thesis. Unlike the

modus ponens strategy applied to generate the rule framework described in the previ-

ous chapters, proofs by contradiction cannot actually be implemented using a simple

propagator network in which each cell contains the reasons for supporting a particular

belief state. Effective application of proving a contradiction requires the creation of

a separate worldview in which the a belief contrary to what is to be proven is held

true. If we seek to prove that (jack parent ben) is to be accepted, we must create

a worldview which is identical to the current one except that (jack parent ben) is

rejected, and we must determine whether such rejection implies a contradiction.

Proving a belief by contradiction not only depends on the ability to represent two

worldviews (the original worldview in which we wish to assert the proven belief, as

well as the hypothetical worldview in which we attempt to show a contradiction),

which is difficult for reasons discussed above, but it also depends on the ability to

connect the worldviews. That is, the existence of a contradiction in the “contrary”

worldview in which (jack parent ben) is rejected necessarily creates an effect in

the original worldview by supporting the belief that we wished to prove in the first

place, (jack parent ben).

While such a system might indeed be made possible through the extension of

propagator networks to permit multiple worldviews, reductio ad absurdum is not

a method of argumentation that is currently feasible with the existing propagator

network infrastructure. It thus suggests that there is room for improvement of the

underlying propagator network substrate.

7.3 Alternate Belief States

Although I have laid out five belief states for each proposition in this thesis, it is

possible that more belief states may be useful or necessary for other computations.

88

A number of modal qualifications exist for each proposition which may be better

served as a belief state, including the want-to-know modality expressed in the Aintno

example throughout the thesis.

Other modalities may also prove useful, including a modality of indifference (if

a problem solver need not factor in or care about the belief in a proposition) and a

modality of irrelevance (e.g. if a problem solver wishes to prove that some proposition

is true or false regardless of the belief in another proposition). It is unclear if these

modalities represent true alternate belief states in addition to the states of acceptance,

rejection, contradiction, knowledge, and ignorance. The want-to-know modality in

particular appears to be a proposition of its own, based on the fact that we may

consider a need-to-know itself to be accepted, rejected, or something of which we are

ignorant.

On a more fundamental level, however, the boundary between a true belief and

a modality deserving of its own proposition is unclear, as any belief may plausibly

be reified. For example, we might talk about the rejected belief of a proposition

(accepted (jack parent ben)), itself describing a belief in the acceptance of (jack

parent ben).

Regardless of the viability of various modalities of a proposition, however, the

set of five beliefs proposed here should be viewed as a minimal set, rather than a

complete set of the beliefs that apply to a given proposition. Additional use cases

of propositional problem solving may indeed find that one or more additional belief

states are necessary to solve other kinds of problems not detailed in this thesis.

7.4 Probability in Cells

Throughout this thesis, we have discussed beliefs such as acceptance or rejection as

if they have firm Boolean values associated with them (i.e. it is either 100% true

that we accept a proposition, 100% false, or, of course, 100% null). However, this

should not be seen as a judgment made with regard to probabilistic approaches to

reasoning and problem solving. Indeed, it is possible to imagine that, rather than

89

storing a strict Boolean value in a TMS that a probability value is stored instead.

These probabilities could then be used in turn to support other propositions on the

basis of various probabilistic models and theories such as Bayesian inference.

In order to implement such a system, work must be done to establish a sound data

structure to replace the basic TMS and to develop appropriate propagators so as to

permit probabilistic calculations. For example, it may be the case that a probabilistic

model of belief should connect acceptance and rejection in such a way that a belief

that there is to be no contradiction necessarily forces the probability of acceptance to

be 1 minus the probability of rejection. Similarly, the data structure stored in cells

must be capable of handling probabilities appropriately, although it is possible that

a TMS may be sufficient.

7.5 Contributions and Conclusions

Despite these two flaws, the concept of propositional reasoning is compelling. By mod-

eling beliefs separately from the structure of the problem solver itself, it is possible to

inject complex control into problem solving and to make use of widely different mech-

anisms for doing so. For example, simply using knowledge of a solution’s existence

may make it possible to control the nature of and limit the extent of problem solving.

This is demonstrated most effectively in the scenario presented in the previous chap-

ter, in which work was not done to prove whether or not Danny ate unhealthy food

unless it was impossible to approve or deny Danny’s insurance by any other means.

Such a mechanism permits problem solvers to intelligently select goals. It also

provides flexibility in problem solving (there are no constraints in how or in what order

Danny’s risk must be scored) while still allowing for a level of control to effectively

account for hidden costs incurred in the process of problem solving (e.g. by restricting

the amount of work spent on Danny’s eating habits until the benefits outweighed the

costs of the work).

The nature of the underlying propagator network substrate of this system affords

other valuable benefits, including complex justification generation based on the struc-

90

ture through which information and beliefs flow. By grounding such justifications in a

semantic-rich programming substrate, justifications are obtained at little cost and the

semantics of the propagator network can be used to obtain meaningful justifications

at multiple levels of detail.

Although work is clearly still needed to establish the practical viability of propo-

sitional techniques in problem solving as a whole, including work on the problems

of supporting multiple worldviews and adding support for proof by contradiction to

the underlying propagator architecture, propositional reasoning appears to be a func-

tional approach to general-purpose problem solving solutions which may better model

the flexibility of human thought for use in a dynamic, ever-changing world.

91

92

Appendix A

A Sample Session with Propositional

Reasoning

The example scenario given in Chapter 6 provided only a handful of examples of

how Danny’s insurance might be determined. In practice, users may interact with

the propositional system through the standard read-eval-print loop of MIT/Scheme.

This appendix contains an extended interactive session and demonstrates explanation

generation in the Aintno scenario. Input is given on its own line, while expected

output is given within multi-line Scheme comments (beginning with #| and ending

with |#).

93

;;; Ground facts about Danny

(true! '(Danny engages-in skydiving) 'Facebook)

(true! '(Danny engages-in motorcycling) 'Flickr)

(false! '(Danny engages-in scubadiving) 'Danny)

(unknown! '(Danny engages-in rockclimbing) 'Danny)

;;; His eating habits

(true! '(hals-hotdogs is-a restaurant) 'Hal)

(true! '(hals-hotdogs primarily-serves hotdogs) 'Hal)

(true! '(hotdogs is-a food) 'common-knowledge)

(true! '(hotdogs is unhealthy) 'FDA)

(true! '(Danny works-at hals-hotdogs) 'Danny)

(true! '(Danny likes hals-hotdogs) 'Danny)

;;; Ground facts about AINTNO

(true! '(risk-accept-threshold AINTNO 2) 'aintno-1)

(true! '(risk-reject-threshold AINTNO 3) 'aintno-2)

(length (db-alist-alist (content *database*)))
;Value: 19

;;; The problem

(true! '(please-determine-if Danny is-insurable-by AINTNO) 'gjs-1)

(length (db-alist-alist (content *database*)))
;Value: 24

94

(cpp (explain
(rejected (proposition '(Danny insurance-issued-by AINTNO))) 1))

#|
((((rejected (danny insurance-issued-by aintno)))

has-value
#t
by
((>:p) (out) (3))
with-premises
facebook
flickr
danny
risk:accumulator-of:danny:for:aintno:premise4)

((out) has-value
5.15
by
((p:accumulator) (0))
with-premises
facebook
flickr
danny
risk:accumulator-of:danny:for:aintno:premise4))

|#

(cpp (explain
(rejected (proposition '(Danny insurance-issued-by AINTNO))) 2))

#|
((((rejected (danny insurance-issued-by aintno)))

has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises facebook flickr danny
risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno)
has-value 5.15
by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:4)
(risk:accumulator-of:danny:for:aintno:contribution:3)
(risk:accumulator-of:danny:for:aintno:contribution:2)
(risk:accumulator-of:danny:for:aintno:contribution:1)
(risk:accumulator-of:danny:for:aintno:zero))

with-premises facebook flickr danny
risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p) ((accepted (contribution risk danny .25 rockclimber))) (.25))
with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

95

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 scubadiver))) (-.1))
with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p) ((accepted (contribution risk danny 2. motorcycler))) (2.))
with-premises flickr)

(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flickr)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flickr)

((risk:accumulator-of:danny:for:aintno:contribution:1)
has-value 3.
by ((switch:p) ((accepted (contribution risk danny 3. skydiver))) (3.))
with-premises facebook)

(((accepted (contribution risk danny 3. skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((accepted (danny engages-in skydiving))))
with-premises facebook)

(((accepted (danny engages-in skydiving)))
has-value #t
by (user)
with-premises facebook)

((risk:accumulator-of:danny:for:aintno:zero) has-value 0))
|#

96

(cpp (explain
(rejected (proposition '(Danny insurance-issued-by AINTNO))) 3))

#|
((((rejected (danny insurance-issued-by aintno)))

has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises facebook flickr danny

risk:accumulator-of:danny:for:aintno:premise4)
((risk:accumulator-of:danny:for:aintno)
has-value 5.15
by ((switch:p) (risk:accumulator-of:danny:for:aintno:construction:4)

(risk:accumulator-of:danny:for:aintno:partial-sum:4))
with-premises facebook flickr danny

risk:accumulator-of:danny:for:aintno:premise4)
((risk:accumulator-of:danny:for:aintno:construction:4)
has-value #t
by (user)
with-premises risk:accumulator-of:danny:for:aintno:premise4)

((risk:accumulator-of:danny:for:aintno:partial-sum:4)
has-value 5.15
by ((+:p) (risk:accumulator-of:danny:for:aintno:partial-sum:3)

(risk:accumulator-of:danny:for:aintno:buffer:4))
with-premises danny flickr facebook)

((risk:accumulator-of:danny:for:aintno:partial-sum:3)
has-value 4.9
by ((+:p) (risk:accumulator-of:danny:for:aintno:partial-sum:2)

(risk:accumulator-of:danny:for:aintno:buffer:3))
with-premises danny flickr facebook)

((risk:accumulator-of:danny:for:aintno:partial-sum:2)
has-value 5.
by ((+:p) (risk:accumulator-of:danny:for:aintno:partial-sum:1)

(risk:accumulator-of:danny:for:aintno:buffer:2))
with-premises flickr facebook)

((risk:accumulator-of:danny:for:aintno:partial-sum:1)
has-value 3.
by ((+:p) (risk:accumulator-of:danny:for:aintno:zero)

(risk:accumulator-of:danny:for:aintno:buffer:1))
with-premises facebook)

((risk:accumulator-of:danny:for:aintno:buffer:1)
has-value 3.
by ((p:default-value)

(risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:contribution:1))

with-premises facebook)
((risk:accumulator-of:danny:for:aintno:contribution:1)
has-value 3.
by ((switch:p) ((accepted (contribution risk danny 3. skydiver))) (3.))
with-premises facebook)

97

(((accepted (contribution risk danny 3. skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((accepted (danny engages-in skydiving))))
with-premises facebook)

(((accepted (danny engages-in skydiving)))
has-value #t
by (user)
with-premises facebook)

((risk:accumulator-of:danny:for:aintno:buffer:2)
has-value 2.
by ((p:default-value)

(risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:contribution:2))

with-premises flickr)
((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p) ((accepted (contribution risk danny 2. motorcycler))) (2.))
with-premises flickr)

(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flickr)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flickr)

((risk:accumulator-of:danny:for:aintno:buffer:3)
has-value -.1
by ((p:default-value)

(risk:accumulator-of:danny:for:aintno:zero)
(risk:accumulator-of:danny:for:aintno:contribution:3))

with-premises danny)
((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 scubadiver))) (-.1))
with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:buffer:4)
has-value .25
by ((p:default-value) (risk:accumulator-of:danny:for:aintno:zero)

(risk:accumulator-of:danny:for:aintno:contribution:4))
with-premises danny)

((risk:accumulator-of:danny:for:aintno:zero) has-value 0)

98

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p) ((accepted (contribution risk danny .25 rockclimber))) (.25))
with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny))

|#

99

(retract! 'Facebook)

(length (db-alist-alist (content *database*)))
;Value: 32

;;; We have other knowledge!
(false! '(Danny engages-in skydiving) 'ParachutingAssociation)

(length (db-alist-alist (content *database*)))
;Value: 33

;;; But Danny is still rejected, because of his eating habits.

(cpp (explain
(rejected (proposition '(Danny insurance-issued-by AINTNO))) 1))

#|
((((rejected (danny insurance-issued-by aintno)))

has-value #t
by ((>:p) (accumulation) (3))
with-premises nothing:1

flickr
danny
fda
common-knowledge
hal
parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((accumulation)
has-value 4.050000000000001
by ((p:accumulator) (0))
with-premises nothing:1

flickr
danny
fda
common-knowledge
hal
parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6))

|#

100

(cpp (explain
(rejected (proposition '(Danny insurance-issued-by AINTNO))) 2))

#|
((((rejected (danny insurance-issued-by aintno)))

has-value #t
by ((>:p) (risk:accumulator-of:danny:for:aintno) (3))
with-premises nothing:1 flickr danny fda common-knowledge hal

parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno)
has-value 4.050000000000001
by (((accumulator (p:+)))

(risk:accumulator-of:danny:for:aintno:contribution:6)
(risk:accumulator-of:danny:for:aintno:contribution:5)
(risk:accumulator-of:danny:for:aintno:contribution:4)
(risk:accumulator-of:danny:for:aintno:contribution:3)
(risk:accumulator-of:danny:for:aintno:contribution:2)
(risk:accumulator-of:danny:for:aintno:contribution:1)
(risk:accumulator-of:danny:for:aintno:zero))

with-premises
(hypothetical 460 nothing:1 in #[entity 461] bool)
flickr danny fda common-knowledge hal parachutingassociation
risk:accumulator-of:danny:for:aintno:premise6)

((risk:accumulator-of:danny:for:aintno:contribution:6)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 skydiver))) (-.1))
with-premises parachutingassociation)

(((accepted (contribution risk danny -.1 skydiver)))
has-value #t
by ((((risk-estimate) (skydiving)))

((rejected (danny engages-in skydiving))))
with-premises parachutingassociation)

(((rejected (danny engages-in skydiving)))
has-value #t
by (user)
with-premises parachutingassociation)

((risk:accumulator-of:danny:for:aintno:contribution:5)
has-value 2
by ((switch:p) ((accepted (contribution risk danny 2 eats-unhealthy-food)))

(2))
with-premises fda common-knowledge hal danny)

(((accepted (contribution risk danny 2 eats-unhealthy-food)))
has-value #t
by ((((risk-estimate) (unhealthy-food)))

((accepted (danny eats unhealthy-food))))
with-premises fda common-knowledge hal danny)

(((accepted (danny eats unhealthy-food)))
has-value #t
by ((((common-sense) (food)))

((& ((accepted (danny eats hotdogs)))
((accepted (hotdogs is unhealthy))))))

with-premises fda common-knowledge hal danny)

101

(((accepted (hotdogs is unhealthy)))
has-value #t
by (user)
with-premises fda)

(((accepted (danny eats hotdogs)))
has-value #t
by ((((eating-at) (restaurant)))

((& ((accepted (danny eats-at hals-hotdogs)))
((accepted (hals-hotdogs is-a restaurant)))
((accepted (hals-hotdogs primarily-serves hotdogs)))
((accepted (hotdogs is-a food))))))

with-premises common-knowledge hal danny)
(((accepted (hotdogs is-a food)))
has-value #t
by (user)
with-premises common-knowledge)

(((accepted (hals-hotdogs primarily-serves hotdogs)))
has-value #t
by (user)
with-premises hal)

(((accepted (danny eats-at hals-hotdogs)))
has-value #t
by ((((works-at) (restaurant)))

((& ((accepted (danny works-at hals-hotdogs)))
((accepted (hals-hotdogs is-a restaurant))))))

with-premises hal danny)
(((accepted (hals-hotdogs is-a restaurant)))
has-value #t
by (user)
with-premises hal)

(((accepted (danny works-at hals-hotdogs)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:4)
has-value .25
by ((switch:p) ((accepted (contribution risk danny .25 rockclimber))) (.25))
with-premises danny)

(((accepted (contribution risk danny .25 rockclimber)))
has-value #t
by ((((risk-estimate) (rockclimbing)))

((unknown (danny engages-in rockclimbing))))
with-premises danny)

(((unknown (danny engages-in rockclimbing)))
has-value #t
by (user)
with-premises danny)

102

((risk:accumulator-of:danny:for:aintno:contribution:3)
has-value -.1
by ((switch:p) ((accepted (contribution risk danny -.1 scubadiver))) (-.1))
with-premises danny)

(((accepted (contribution risk danny -.1 scubadiver)))
has-value #t
by ((((risk-estimate) (scubadiving)))

((rejected (danny engages-in scubadiving))))
with-premises danny)

(((rejected (danny engages-in scubadiving)))
has-value #t
by (user)
with-premises danny)

((risk:accumulator-of:danny:for:aintno:contribution:2)
has-value 2.
by ((switch:p) ((accepted (contribution risk danny 2. motorcycler))) (2.))
with-premises flickr)

(((accepted (contribution risk danny 2. motorcycler)))
has-value #t
by ((((risk-estimate) (motorcycling)))

((accepted (danny engages-in motorcycling))))
with-premises flickr)

(((accepted (danny engages-in motorcycling)))
has-value #t
by (user)
with-premises flickr)

((risk:accumulator-of:danny:for:aintno:contribution:1) has #(*the-nothing*))
((risk:accumulator-of:danny:for:aintno:zero) has-value 0))

|#

103

104

Bibliography

[1] Stewart Brand. The Clock of the Long Now: Time and Responsibility: The Ideas
Behind the World’s Slowest Computer. Basic Books, New York, 2000.

[2] Todd S. Braver and Susan R. Bongiolatti. The role of frontopolar cortex in
subgoal processing during working memory. NeuroImage, 15(3):523–536, March
2002.

[3] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and where: A
characterization of data provenance. In Jan Van den Bussche and Victor Vianu,
editors, Database Theory – ICDT 2001, pages 316–330. Springer, 2001.

[4] Philip A. Cowan. Piaget: With Feeling. Holt, Rinehart and Winston, New York,
1978.

[5] Johan de Kleer, Jon Doyle, Charles Rich, Guy L. Steele Jr., and Gerald Jay
Sussman. AMORD: A deductive procedure system. AI Memo 435, MIT Artificial
Intelligence Laboratory, Cambridge, MA, January 1978.

[6] Jon Doyle. Truth maintenance systems for problem solving. AI Technical Report
419, MIT Artificial Intelligence Laboratory, Cambridge, MA, 1978.

[7] Kenneth Forbus and Johan de Kleer. Building Problem Solvers. MIT Press,
Cambridge, MA, 1993.

[8] Ragib Hasan, Radu Sion, and Marianne Winslett. Preventing history forgery
with secure provenance. ACM Transactions on Storage, 5(4):12:1–12:43, Decem-
ber 2009.

[9] Linda Hermer-Vazquez, Elizabeth S. Spelke, and Alla S. Katsnelson. Sources of
flexibility in human cognition: Dual-task studies of space and language. Cognitive
Psychology, 39(1):3 – 36, August 1999.

[10] Kay E. Holekamp. Questioning the social intelligence hypothesis. Trends in
Cognitive Sciences, 11(2):65 – 69, February 2007.

[11] Lindsay M. Howden and Julie A. Meyer. Age and sex composition: 2010. 2010
Census Briefs C2010BR-03, United States Census Bureau, Economics and Statis-
tics Administration, U.S. Department of Commerce, May 2011.

105

[12] Joxan Jaffar and Michael J. Maher. Constraint logic programming: a survey.
The Journal of Logic Programming, 19–20(Suppl. 1):503–581, May–July 1994.

[13] Gordon G. Gallup Jr. Chimpanzees: Self-recognition. Science, 167(3917):86–87,
January 23, 1970.

[14] Nuel D. Belnap Jr. A useful four-valued logic. In G. Epstein and J. M. Dunn,
editors, Modern Uses of Multiple-Valued Logic, volume 2, pages 5–37. Reidel
Publishing Company, Boston, 1977.

[15] Elisha S. Loomis. The Pythagorean Proposition. The National Council of Teach-
ers of Mathematics, 1968.

[16] Marvin Minsky. K-lines: A theory of memory. AI Memo 516, MIT Artificial
Intelligence Laboratory, Cambridge, MA, June 1979.

[17] Marvin Minsky. The Society of Mind. Simon and Schuster, New York, 1988.

[18] Marvin Minsky. The Emotion Machine. Simon and Schuster, New York, 2006.

[19] Lennart Nathell, Madelene Nathell, Per Malmberg, and Kjell Larsson. COPD
diagnosis related to different guidelines and spirometry techniques. Respiratory
Research, 8, 2007.

[20] Sue Taylor Parker and Kathleen R. Gibson. Object manipulation, tool use and
sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes.
Journal of Human Evolution, 6(7):623–641, November 1977.

[21] Alexey Radul and Gerald Jay Sussman. The art of the propagator. CSAIL
Technical Report MIT-CSAIL-TR-2009-002, MIT Computer Science and Artifi-
cial Intelligence Laboratory, Cambridge, MA, January 2009.

[22] Anita Ramasastry. Will insurers begin to use social media postings to
calculate premiums? Verdict > Consumer Law, Justia, January 3,
2012. http://verdict.justia.com/2012/01/03/will-insurers-begin-to-use-social-
media-postings-to-calculate-premiums, accessed August 26, 2013.

[23] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to practice. In
Proceedings of the First International Conference on Multiagent Systems, pages
312–319. AAAI Press, 1995.

[24] N. T. Roseveare. Mercury’s Perihelion: from Le Verier to Einstein. Clarendon
Press, Oxford, 1982.

[25] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

106

[26] Barbara Rutter, Sören Kröger, Rudolf Stark, Jan Schweckendiek, Sabine Wind-
mann, Christiane Hermann, and Anna Abraham. Can clouds dance? Neural
correlates of passive conceptual expansion using a metaphor processing task:
Implications for creative cognition. Brain and Cognition, 78(2):114–122, March
2012.

[27] Leslie Scism and Mark Maremont. Inside Deloitte’s life-insurance
assessment technology. Wall Street Journal, November 19, 2010.
http://online.wsj.com/article/SB10001424052748704104104575622531084755588.html,
accessed August 26, 2013.

[28] Patrick Suppes. Introduction to Logic. Van Nostrand Reinhold Company, New
York, 1957.

[29] Ian Tattersall. An evolutionary framework for the acquisition of symbolic cog-
nition by Homo sapiens. Comparative Cognition & Behavior Reviews, 3:99–114,
2008.

[30] Inge Volman, Karin Roelofs, Saskia Koch, Lennart Verhagen, and Ivan Toni. An-
terior prefrontal cortex inhibition impairs control over social emotional actions.
Current Biology, 21:1766–1770, October 25, 2011.

[31] David L. Waltz. Generating semantic descriptions from drawings of scenes with
shadows. Technical Report 271, MIT Artificial Intelligence Laboratory, Cam-
bridge, MA, November 1972.

[32] Carter Wendelken, Denis Nakhabenko, Sarah E. Donohue, Cameron S. Carter,
and Silvia A. Bunge. “Brain is to thought as stomach is to ??”: Investigating the
role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive
Neuroscience, 20(4):682–693, April 2008.

[33] Liane Young, Joan Alber Camprodon, Marc Hauser, Alvaro Pascual-Leone, and
Rebecca Saxe. Disruption of the right temporoparietal junction with transcranial
magnetic stimulation reduces the role of beliefs in moral judgments. PNAS Early
Edition, March 29, 2010. DOI: 10.1073/pnas.0914826107.

107

